Arsenic and antimony in geothermal waters of Yellowstone National Park, Wyoming, USA

Geochimica et Cosmochimica Acta
By:  and 


  • The Publications Warehouse does not have links to digital versions of this publication at this time
  • Download citation as: RIS | Dublin Core


A total of 268 thermal spring samples were analyzed for total soluble As using reduced molybdenum-blue; 27 of these samples were also analyzed for total Sb using flame atomic absorption spectrometry. At Yellowstone the Cl As atomic ratio is nearly constant among neutral-alkaline springs with Cl > 100 mg L-1, and within restricted geographic areas, indicating no differential effects of adiabatic vs. conductive cooling on arsenic. The Cl As ratio increases with silica and decreases with decreasing Cl ??CO3; the latter relationship is best exemplified for springs along the extensively sampled SE-NW trend within the Lone Star-Upper-Midway Basin region. The relationship between Cl As and Cl ??CO3 at Yellowstone suggests a possible rock leaching rather than magmatic origin for much of the Park's total As flux. Condensed vapor springs are low in both As and Cl. Very high Cl As ratios ( > 1000) are associated exclusively with highly diluted (Cl < 100 mg L-1) mixed springs in the Norris and Shoshone Basins and in the Upper White Creek and Firehole Lake areas of Lower Basin. The high ratios are associated with acidity and/or oxygen and iron; they indicate precipitation of As following massive dilution of the Asbearing high-Cl parent water. Yellowstone Sb ranged from 0.009 at Mammoth to 0.166 mg L-1 at Joseph's Coat Spring. Within basins, the Cl Sb ratio increases as the Cl ??CO3 ratio decreases, in marked contrast to As. Mixed springs also have elevated Cl Sb ratios. White (1967) and Weissberg (1969) previously reported stibnite (Sb2S3), but not orpiment (As2S3), precipitating in the near surface zone of alkaline geothermal systems. ?? 1984.

Additional publication details

Publication type Article
Publication Subtype Journal Article
Title Arsenic and antimony in geothermal waters of Yellowstone National Park, Wyoming, USA
Series title Geochimica et Cosmochimica Acta
Volume 48
Issue 12
Year Published 1984
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Geochimica et Cosmochimica Acta
First page 2547
Last page 2561
Google Analytic Metrics Metrics page