Publications recently added to the Pubs Warehouse

(500 records max)

Evidence of sound production by spawning lake trout (Salvelinus namaycush) in lakes Huron and Champlain

Released May 26, 2017 00:00 EST

2017, Canadian Journal of Fisheries and Aquatic Sciences

Nicholas S. Johnson, Dennis Higgs, Thomas R. Binder, J. Ellen Marsden, Tyler John Buchinger, Linnea Brege, Tyler Bruning, Steve A. Farha, Charles Conrad Krueger

Two sounds associated with spawning lake trout (Salvelinus namaycush) in lakes Huron and Champlain were characterized by comparing sound recordings to behavioral data collected using acoustic telemetry and video. These sounds were named growls and snaps, and were heard on lake trout spawning reefs, but not on a non-spawning reef, and were more common at night than during the day. Growls also occurred more often during the spawning period than the pre-spawning period, while the trend for snaps was reversed. In a laboratory flume, sounds occurred when male lake trout were displaying spawning behaviors; growls when males were quivering and parallel swimming, and snaps when males moved their jaw. Combining our results with the observation of possible sound production by spawning splake (Salvelinus fontinalis × Salvelinus namaycush hybrid), provides rare evidence for spawning-related sound production by a salmonid, or any other fish in the superorder Protacanthopterygii. Further characterization of these sounds could be useful for lake trout assessment, restoration, and control.

Trends in Rainbow Trout recruitment, abundance, survival, and growth during a boom-and-bust cycle in a tailwater fishery

Released May 26, 2017 00:00 EST

2017, Transactions of the American Fisheries Society

Josh Korman, Micheal D. Yard, Theodore A. Kennedy

Data from a large-scale mark-recapture study was used in an open population model to determine the cause for long-term trends in growth and abundance of a Rainbow Trout Oncorhynchus mykiss population in the tailwater of Glen Canyon Dam, AZ. Reduced growth affected multiple life stages and processes causing negative feedbacks that regulated the abundance of the population, including: higher mortality of larger fish; lower rates of recruitment (young of year) in years when growth was reduced; and lower rates of sexual maturation the following year. High and steady flows during spring and summer of 2011 resulted in very large recruitment event. The population declined 10-fold by 2016 due a combination of lower recruitment and reduced survival of larger trout. Survival rates for trout ≥ 225 mm in 2014, 2015, and 2016 were 11%, 21%, and 22% lower than average survival rates between 2012 and 2013, respectively. Abundance at the end of the study would have been three- to five-fold higher had survival rates for larger trout remained at the elevated levels estimated for 2012 and 2013. Growth declined between 2012 and 2014 owing to reduced prey availability, which led to very poor fish condition by fall of 2014 (~0.9-0.95). Poor condition in turn resulted in low survival rates of larger fish during fall of 2014 and winter of 2015, which contributed to the population collapse. In Glen Canyon, large recruitment events driven by high flows can lead to increases in the population that cannot be sustained due to limitations in prey supply. In the absence of being able to regulate prey supply, flows which reduce the probability of large recruitment events can be used to avoid boom-and-bust population cycles. Our study demonstrates that mark-recapture is a very informative approach for understanding the dynamics of tailwater trout populations.

Deleterious effects of net clogging on the quantification of stream drift

Released May 26, 2017 00:00 EST

2017, Canadian Journal of Fisheries and Aquatic Sciences

Jeffrey D. Muehlbauer, Theodore A. Kennedy, Adam J. Copp, Thomas Sabol

Drift studies are central to stream and river ecological research. However, a fundamental aspect of quantifying drift — how net clogging affects the accuracy of results — has been widely ignored. Utilizing approaches from plankton and suspended sediment studies in oceanography and hydrology, we examined the rate and dynamics of net clogging across a range of conditions. We found that nets clog nonlinearly over time and that suspended solid concentrations and net mesh size exerted a strong effect on clogging rates. Critically, net clogging introduced unpredictable biases in resultant data due to the inaccuracies in water volume estimates introduced by progressive clogging. This renders the widespread approach to linearly “correct” for clogging inadequate. Using a meta-analysis of 77 drift studies spanning 25 years, we demonstrate that the detrimental effects of net clogging are routinely unappreciated, even though the results of most of these studies were likely affected by clogging. We close by describing an approach for avoiding net clogging, which will increase the accuracy and reproducibility of results in future freshwater, lotic drift studies.

Doubling of coastal flooding frequency within decades due to sea-level rise

Released May 26, 2017 00:00 EST

2017, Scientific Reports (7) 1-9

Sean Vitousek, Patrick L. Barnard, Charles H. Fletcher, Neil Frazer, Li Erikson, Curt D. Storlazzi

Global climate change drives sea-level rise, increasing the frequency of coastal flooding. In most coastal regions, the amount of sea-level rise occurring over years to decades is significantly smaller than normal ocean-level fluctuations caused by tides, waves, and storm surge. However, even gradual sea-level rise can rapidly increase the frequency and severity of coastal flooding. So far, global-scale estimates of increased coastal flooding due to sea-level rise have not considered elevated water levels due to waves, and thus underestimate the potential impact. Here we use extreme value theory to combine sea-level projections with wave, tide, and storm surge models to estimate increases in coastal flooding on a continuous global scale. We find that regions with limited water-level variability, i.e., short-tailed flood-level distributions, located mainly in the Tropics, will experience the largest increases in flooding frequency. The 10 to 20 cm of sea-level rise expected no later than 2050 will more than double the frequency of extreme water-level events in the Tropics, impairing the developing economies of equatorial coastal cities and the habitability of low-lying Pacific island nations.

Land use history and population dynamics of free-standing figs in a maturing forest

Released May 26, 2017 00:00 EST

2017, PLoS ONE (12) 1-18

Larissa Albrecht, Robert F. Stallard, Elisabeth K.V. Kalko

Figs (Ficus sp.) are often considered as keystone resources which strongly influence tropical forest ecosystems. We used long-term tree-census data to track the population dynamics of two abundant free-standing fig species, Ficus insipida and F. yoponensis, on Barro Colorado Island (BCI), a 15.6-km2 island in Lake Gatún, Panama. Vegetation cover on BCI consists of a mosaic of old growth (>400 years) and maturing (about 90–150 year old) secondary rainforest. Locations and conditions of fig trees have been mapped and monitored on BCI for more than 35 years (1973–2011), with a focus on the Lutz Catchment area (25 ha). The original distribution of the fig trees shortly after the construction of the Panama Canal was derived from an aerial photograph from 1927 and was compared with previous land use and forest status. The distribution of both fig species (~850 trees) is restricted to secondary forest. Of the original 119 trees observed in Lutz Catchment in 1973, >70% of F. insipida and >90% of F. yoponensis had died by 2011. Observations in other areas on BCI support the trend of declining free-standing figs. We interpret the decline of these figs on BCI as a natural process within a maturing tropical lowland forest. Senescence of the fig trees appears to have been accelerated by severe droughts such as the strong El Niño event in the year 1982/83. Because figs form such an important food resource for frugivores, this shift in resource availability is likely to have cascading effects on frugivore populations.

Can beaches survive climate change?

Released May 26, 2017 00:00 EST

2017, Journal of Geophysical Research F: Earth Surface (122) 1060-1067

Sean Vitousek, Patrick L. Barnard, Patrick W. Limber

Anthropogenic climate change is driving sea level rise, leading to numerous impacts on the coastal zone, such as increased coastal flooding, beach erosion, cliff failure, saltwater intrusion in aquifers, and groundwater inundation. Many beaches around the world are currently experiencing chronic erosion as a result of gradual, present-day rates of sea level rise (about 3 mm/year) and human-driven restrictions in sand supply (e.g., harbor dredging and river damming). Accelerated sea level rise threatens to worsen coastal erosion and challenge the very existence of natural beaches throughout the world. Understanding and predicting the rates of sea level rise and coastal erosion depends on integrating data on natural systems with computer simulations. Although many computer modeling approaches are available to simulate shoreline change, few are capable of making reliable long-term predictions needed for full adaption or to enhance resilience. Recent advancements have allowed convincing decadal to centennial-scale predictions of shoreline evolution. For example, along 500 km of the Southern California coast, a new model featuring data assimilation predicts that up to 67% of beaches may completely erode by 2100 without large-scale human interventions. In spite of recent advancements, coastal evolution models must continue to improve in their theoretical framework, quantification of accuracy and uncertainty, computational efficiency, predictive capability, and integration with observed data, in order to meet the scientific and engineering challenges produced by a changing climate.

Declines in low-elevation subalpine tree populations outpace growth in high-elevation populations with warming

Released May 26, 2017 00:00 EST

2017, Journal of Ecology

Erin Conlisk, Cristina Castanha, Matthew J. Germino, Thomas T Veblen, Jeremy M. Smith, Lara M. Kueppers

  1. Species distribution shifts in response to climate change require that recruitment increase beyond current range boundaries. For trees with long life spans, the importance of climate-sensitive seedling establishment to the pace of range shifts has not been demonstrated quantitatively.
  2. Using spatially explicit, stochastic population models combined with data from long-term forest surveys, we explored whether the climate-sensitivity of recruitment observed in climate manipulation experiments was sufficient to alter populations and elevation ranges of two widely distributed, high-elevation North American conifers.
  3. Empirically observed, warming-driven declines in recruitment led to rapid modelled population declines at the low-elevation, ‘warm edge’ of subalpine forest and slow emergence of populations beyond the high-elevation, ‘cool edge’. Because population declines in the forest occurred much faster than population emergence in the alpine, we observed range contraction for both species. For Engelmann spruce, this contraction was permanent over the modelled time horizon, even in the presence of increased moisture. For limber pine, lower sensitivity to warming may facilitate persistence at low elevations – especially in the presence of increased moisture – and rapid establishment above tree line, and, ultimately, expansion into the alpine.
  4. Synthesis. Assuming 21st century warming and no additional moisture, population dynamics in high-elevation forests led to transient range contractions for limber pine and potentially permanent range contractions for Engelmann spruce. Thus, limitations to seedling recruitment with warming can constrain the pace of subalpine tree range shifts.

Formation of Fe-Mn crusts within a continental margin environment

Released May 26, 2017 00:00 EST

2017, Ore Geology Reviews (87) 25-40

Tracey A. Conrad, James R. Hein, Adina Paytan, David A. Clague

This study examines Fe-Mn crusts that form on seamounts along the California continental-margin (CCM), within the United States 200 nautical mile exclusive economic zone. The study area extends from approximately 30° to 38° North latitudes and from 117° to 126° West longitudes. The area of study is a tectonically active northeast Pacific plate boundary region and is also part of the North Pacific Subtropical Gyre with currents dominated by the California Current System. Upwelling of nutrient-rich water results in high primary productivity that produces a pronounced oxygen minimum zone. Hydrogenetic Fe-Mn crusts forming along the CCM show distinct chemical and mineral compositions compared to open-ocean crusts. On average, CCM crusts contain more Fe relative to Mn than open-ocean Pacific crusts. The continental shelf and slope release both Fe and Mn under low-oxygen conditions. Silica is also enriched relative to Al compared to open-ocean crusts. This is due to the North Pacific silica plume and enrichment of Si along the path of deep-water circulation, resulting in Si enrichment in bottom and intermediate waters of the eastern Pacific.

The CCM Fe-Mn crusts have a higher percentage of birnessite than open-ocean crusts, reflecting lower dissolved seawater oxygen that results from the intense coastal upwelling and proximity to zones of continental slope pore-water anoxia. Carbonate fluorapatite (CFA) is not present and CCM crusts do not show evidence of phosphatization, even in the older sections. The mineralogy indicates a suboxic environment under which birnessite forms, but in which pH is not high enough to facilitate CFA deposition. Growth rates of CCM crusts generally increase with increasing water depth, likely due to deep-water Fe sources mobilized from reduced shelf and slope sediments.

Many elements of economic interest including Mn, Co, Ni, Cu, W, and Te have slightly or significantly lower concentrations in CCM crusts relative to crusts from the Pacific Prime Crust Zone and other open-ocean basins. However, concentrations of total rare earth elements and yttrium average only slightly lower contents and in the future may be a strategic resource for the U.S.

Water-quality and lake-stage data for Wisconsin lakes, water year 2014

Released May 25, 2017 15:45 EST

2017, Open-File Report 2016-1131

S. Bridgett Manteufel, Dale M. Robertson


The U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a database for developing an improved understanding of the water quality of lakes. To make these data available to interested parties outside the USGS, the data are published annually in this report series. The locations of water-quality and lake-stage stations in Wisconsin for water year 2014 are shown in figure 1. A water year is the 12-month period from October 1 through September 30. It is designated by the calendar year in which it ends. Thus, the period
October 1, 2013, through September 30, 2014, is called “water year 2014.”

The purpose of this report is to provide information about the chemical and physical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected include measurements of in-lake water quality and lake stage. Time series of Secchi depths, surface total phosphorus, and chlorophyll a concentrations collected during nonfrozen periods are included for many lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes the location of the lake, area of the lake’s watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published online at

Water-resources data, including stage and discharge data at most streamflow-gaging stations, are available online. The Wisconsin Water Science Center’s home page is at Information about the Wisconsin Water Science Center’s Lakes Program is found at and

Water-quality and lake-stage data for Wisconsin lakes, water years 2012–2013

Released May 25, 2017 15:45 EST

2017, Open-File Report 2016-1050

S. Bridgett Manteufel, Dale M. Robertson


The U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a data base for developing an improved understanding of the water quality of lakes. To make these data available to interested parties outside the USGS, the data are published annually in this report series. The locations of water-quality and lake-stage stations in Wisconsin for water year 2012 are shown in figure 1. A water year is the 12-month period from October 1 through September 30. It is designated by the calendar year in which it ends. Thus, the period October 1, 2011 through September 30, 2012, is called “water year 2012.”

The purpose of this report is to provide information about the chemical and physical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected include measurements of in-lake water quality and lake stage. Time series of Secchi depths, surface total phosphorus and chlorophyll a concentrations collected during non-frozen periods are included for all lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes: location of the lake, area of the lake’s watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published online at

Water-resources data, including stage and discharge data at most streamflow-gaging stations, are available online. The Wisconsin Water Science Center’s home page is at Information on the Wisconsin Water Science Center’s Lakes Program is found at and

Summary of oceanographic and water-quality measurements in Chincoteague Bay, Maryland and Virginia, 2014–15

Released May 25, 2017 13:50 EST

2017, Open-File Report 2017-1032

Steven E. Suttles, Neil K. Ganju, Sandra M. Brosnahan, Ellyn T. Montgomery, Patrick J. Dickhudt, Alexis Beudin, Daniel J. Nowacki, Marinna A. Martini

U.S. Geological Survey scientists and technical support staff measured oceanographic, waterquality, seabed-elevation-change, and meteorological parameters in Chincoteague Bay, Maryland and Virginia, during the period of August 13, 2014, to July 14, 2015, as part of the Estuarine Physical Response to Storms project (GS2–2D) supported by the Department of the Interior Hurricane Sandy recovery program. These measurements provide time series data that quantify the response and can be used to better understand the resilience of this back-barrier estuarine system to storms. The Assateague Island National Seashore (National Park Service) and the Chincoteague National Wildlife Refuge (U.S. Fish and Wildlife Service) are on the east side of Chincoteague Bay.

Advanced National Seismic System—Current status, development opportunities, and priorities for 2017–27

Released May 25, 2017 09:45 EST

2017, Circular 1429

U.S. Geological Survey


Earthquakes pose a threat to the safety of over 143 million people living in the United States. Earthquake impacts can be significantly reduced if communities understand their risk and take proactive steps to mitigate that risk. The Advanced National Seismic System (ANSS) is a cooperative effort to collect and analyze seismic and geodetic data on earthquakes, issue timely and reliable notifications of their occurrence and impacts, and provide data for earthquake research and the hazard and risk assessments that are the foundation for creating an earthquakeresilient nation.

Assessment of continuous gas resources in the Khorat Plateau Province, Thailand and Laos, 2016

Released May 25, 2017 00:15 EST

2017, Fact Sheet 2017-3023

Christopher J. Schenk, Timothy R. Klett, Tracey J. Mercier, Thomas M. Finn, Marilyn E. Tennyson, Stephanie B. Gaswirth, Kristen R. Marra, Phuong A. Le, Ronald M. Drake II

Using a geology-based assessment methodology, the U.S. Geological Survey assessed mean undiscovered, technically recoverable resources of 2.3 trillion cubic feet of continuous gas in the Khorat Plateau Province of Thailand and Laos.

Turbid releases from Glen Canyon Dam, Arizona, following rainfall-runoff events of September 2013

Released May 25, 2017 00:00 EST

2017, Lake and Reservoir Management

Richard A. Wildman Jr., William Vernieu

Glen Canyon Dam is a large dam on the Colorado River in Arizona. In September 2013, it released turbid water following intense thunderstorms in the surrounding area. Turbidity was >15 nephelometric turbidity units (NTU) for multiple days and >30 NTU at its peak. These unprecedented turbid releases impaired downstream fishing activity and motivated a rapid-response field excursion. At 5 locations upstream from the dam, temperature, specific conductance, dissolved oxygen, chlorophyll a, and turbidity were measured in vertical profiles. Local streamflow and rainfall records were retrieved, and turbidity and specific conductance data in dam releases were evaluated. Profiling was conducted to determine possible sources of turbidity from 3 tributaries nearest the dam, Navajo, Antelope, and Wahweap creeks, which entered Lake Powell as interflows during this study. We discuss 4 key conditions that must have been met for tributaries to influence turbidity of dam releases: tributary flows must have reached the dam, tributary flows must have been laden with sediment, inflow currents must have been near the depth of dam withdrawals, and the settling velocity of particles must have been slow. We isolate 2 key uncertainties that reservoir managers should resolve in future similar studies: the reach of tributary water into the reservoir thalweg and the distribution of particle size of suspended sediment. These uncertainties leave the source of the turbidity ambiguous, although an important role for Wahweap Creek is possible. The unique combination of limnological factors we describe implies that turbid releases at Glen Canyon Dam will continue to be rare.

Acoustic deterrence of bighead carp (Hypophthalmichthys nobilis) to a broadband sound stimulus

Released May 25, 2017 00:00 EST

2017, Journal of Great Lakes Research (43) 163-171

Brooke J. Vetter, Kelsie Murchy, Aaron R. Cupp, Jon J. Amberg, Mark P. Gaikowski, Allen F. Mensinger

Recent studies have shown the potential of acoustic deterrents against invasive silver carp (Hypophthalmichthys molitrix). This study examined the phonotaxic response of the bighead carp (H. nobilis) to pure tones (500–2000 Hz) and playbacks of broadband sound from an underwater recording of a 100 hp outboard motor (0.06–10 kHz) in an outdoor concrete pond (10 × 5 × 1.2 m) at the U.S. Geological Survey Upper Midwest Environmental Science Center in La Crosse, WI. The number of consecutive times the fish reacted to sound from alternating locations at each end of the pond was assessed. Bighead carp were relatively indifferent to the pure tones with median consecutive responses ranging from 0 to 2 reactions away from the sound source. However, fish consistently exhibited significantly (P < 0.001) greater negative phonotaxis to the broadband sound (outboard motor recording) with an overall median response of 20 consecutive reactions during the 10 min trials. In over 50% of broadband sound tests, carp were still reacting to the stimulus at the end of the trial, implying that fish were not habituating to the sound. This study suggests that broadband sound may be an effective deterrent to bighead carp and provides a basis for conducting studies with wild fish.

An evaluation of silver-stage American Eel conspecific chemical cueing during outmigration

Released May 25, 2017 00:00 EST

2017, Environmental Biology of Fishes

Andrew K. Schmucker, Nicholas S. Johnson, Heather S. Galbraith, Weiming Li

American Eel Anguilla rostrata abundance has declined in recent decades, in part because sexually maturing, silver-stage adults, outmigrating from freshwater to oceanic spawning grounds, encounter migratory blockades or perish when passing through active hydroelectric turbines. To help improve downstream passage effectiveness and increase survival rates, the role of silver-stage American Eel conspecific chemical cueing during outmigration was investigated using a new type of bioassay. Inside a laboratory flume, downstream-swimming eels were exposed to both live (putative attractant) and dead (putative repellent) conspecific washings to determine whether their trajectory of downstream movement, level of activity, or time spent inside targeted areas of the arena changed after exposure. Silver eels were not attracted to or repulsed by either odor, as none of five scoring metrics indicated a behavioral response. Results did not support the hypothesis that conspecific chemical cueing is a mechanism for downstream migration coordination or danger avoidance; however responses may not have been readily apparent in this type of assay. Fisheries managers may opt to focus future research on more feasible restoration efforts using alternate experimental designs to remedy this ecological issue.

Frogs on the beach: Ecology of California Red-legged Frogs (Rana draytonii) in coastal dune drainages

Released May 25, 2017 00:00 EST

2017, Herpetological Conservation and Biology (12) 127-140

Brian J. Halstead, Patrick M. Kleeman

California Red-legged Frogs (Rana draytonii) are typically regarded as inhabitants of permanent ponds, marshes, and slow-moving streams, but their ecology in other habitats, such as drainages among coastal dunes, remains obscure. Because coastal dune ecosystems have been degraded by development, off-highway vehicle use, stabilization, and invasive species, these unique ecosystems are the focus of restoration efforts. To better understand the ecology of California Red-legged Frogs in coastal dune ecosystems and to avoid and minimize potential negative effects of dune restoration activities on these rare frogs, we studied their spatial ecology, habitat selection, and survival in coastal dune drainages at Point Reyes National Seashore, California, USA. All 22 radio-marked frogs remained in their home drainages throughout the spring and summer of 2015 and, with some notable exceptions, most remained close to water. Local convex hull home ranges of four out of five California Red-legged Frogs with > 20 observations in dunes were < 1,600 m2 . At the population level, frogs were 1.7 (95% credible interval, 1.2‒4.4) times more likely to select sites 1 m closer to water, and were 83 (2.0‒17,000) times more likely to select sites with 10% greater percentage cover of logs that served as refuges from environmental extremes and predators. On average, California Red-legged Frogs avoided the invasive plants Iceplant (Carpobrotus edulis) and European Beachgrass (Ammophila arenaria). Frogs were 0.68 (0.32‒0.89) and 0.55 (0.24‒0.75) times as likely to select areas that had 10% greater cover of these plants, respectively. Assuming constant risk of mortality, California Redlegged Frogs had an annual survival rate of 0.70 (0.27‒0.96) in coastal dune drainages. Our results indicate that coastal dune drainages provide a locally important habitat for California Red-legged Frogs. Restoration practices that maintain wetted drainages with logjams are likely to benefit California Red-legged Frogs.

Conversing with Pelehonuamea: A workshop combining 1,000+ years of traditional Hawaiian knowledge with 200 years of scientific thought on Kīlauea volcanism

Released May 25, 2017 00:00 EST

2017, Open-File Report 2017-1043

James P. Kauahikaua, Janet Babb, editor(s)

The events surrounding volcanic eruptions and damaging earthquakes in Hawai‘i have often been described in journals, letters, and newspapers articles in the English language; however, the Hawaiian nation was among the most literate of countries in the 19th century, and many Hawaiian-language newspapers were in circulation through all but the earliest decades of the 19th century. Any modern reconstruction of the history of Hawaiian eruptions or earthquakes should take advantage of all available sources, and so we seek to add the Hawaiian-language newspaper articles, journals, stories, and chants to the volcano and earthquake literature. These sources have been used in many recent volcanological studies.

Another aspect to the mix of science and traditional Hawaiian values is that many of the volcanic summits in Hawaiʻi are considered sacred to Hawaiians. Hawaiian travelers brought the first Western missionary team to the summit of Kīlauea and advised them of the proper protocols and behaviors while in this sacred area. The missionaries dismissed this advice as native superstition and they began a campaign of aggressively stamping out customs and protocols related to the Hawaiian volcano goddess Pelehonuamea. What has survived as native knowledge of the volcanoes is a few phrases from native guides included in some of the missionaries’ journals, and a few stories. Pualani and Kuʻulei Kanahele provide excellent introductions to the Pelehonuamea chants.

In the 21st century, amid a reawakening of Hawaiian culture, modern Hawaiians are demanding protection of their sacred areas, and scientists must be aware of these interests. At the very least, scientists should show respect to Hawaiian values when working in these areas, and should try to minimize disruptions caused by their work. Kaeo Duarte, Peter Mills, and Scott Rowland describe taking this approach in their field work.

Traditional knowledge is also contained in place names. It is important not only to preserve old place names and to recover those no longer used, but also to preserve the stories of those places. Bobby Camara talks about the joys and frustrations of getting information on and recovering Hawaiian place names.

Finally, we hope that a broader interest in Hawaiian views about locations in Hawaiʻi where physical scientific work is done will be as beneficial to physical scientists as it has been to life scientists investigating Hawaiian lifeforms on land and in the ocean, and that both studies will continue to benefit the native peoples of Hawaiʻi.

Note that these proceedings are transcripts of oral presentations illustrated with PowerPoint presentations or charts. Although every effort has been made to assure the accuracy of the oral presentations, there are some gaps where words are not discernible in the voice recordings and are so noted. In other places, bracketed words were added to clarify the speaker’s meaning.

Response of currents and water quality to changes in dam operations in Hoover Reservoir, Columbus, Ohio, August 24–28, 2015

Released May 25, 2017 00:00 EST

2017, Scientific Investigations Report 2017-5027

Branden L. Vonins, P. Ryan Jackson

Hoover Reservoir, an important drinking water supply for the City of Columbus, Ohio, has been the source of a series of taste and odor problems in treated drinking water during the past few years. These taste and odor problems were caused by the compounds geosmin and 2-methylisoborneol, which are thought to have been related to cyanobacteria blooms. In an effort to reduce the phosphorus available for cyanobacteria blooms at fall turnover, the City of Columbus began experimenting with the dam’s selective withdrawal system to remove excess phosphorus in the hypolimnion, which is released from bottom sediments during summer anoxic conditions.

The U.S. Geological Survey completed two synoptic survey campaigns to assess distributions of water quality and water velocity in the lower part of Hoover Reservoir to provide information on the changes to reservoir dynamics caused by changing dam operations. One campaign (campaign 1) was done while water was being withdrawn from the reservoir through the dam’s middle gate and the other (campaign 2) while water was being withdrawn through the dam’s lower gate. Velocities were measured using an acoustic Doppler current profiler, and water-quality parameters were measured using an autonomous underwater vehicle equipped with water-quality sensors. Along with the water-quality and water-velocity data, meteorological, inflow and outflow discharges, and independent water-quality data were compiled to monitor changes in other parameters that affect reservoir behavior. Monthly nutrient data, collected by the City of Columbus, were also analyzed for trends in concentration during periods of expected stratification.

Based on the results of the two campaigns, when compared to withdrawing water through the middle gate, withdrawing water through the lower gate seemed to increase shear-driven mixing across the thermocline, which resulted in an increase in the depth of the epilimnion throughout the lower part of Hoover Reservoir. The observations from this study, if repeatable and driven primarily by changes in gate operations, can inform nutrient management strategies for Hoover Reservoir. Increased mixing across the thermocline may potentially supply nutrients from the hypolimnion to algae in the epilimnion. Although operation of the lower gate has the potential to export nutrients from the hypolimnion (where the concentrations of nutrients have typically been higher during summer months) through two mechanisms (direct withdrawal and mixing into the epilimnion), supply of nutrients to the epilimnion through enhanced mixing could lead to a short-term increase in algal populations. Therefore, further study is recommended to (1) test the repeatability of the results of gate changes on water-quality distributions and circulation patterns in lower Hoover Reservoir, (2) identify the immediate effect of gate changes on nutrient concentrations in the water column, and (3) identify the best management practices to reduce the nutrient storage in the hypolimnion of Hoover Reservoir without increasing the potential for nutrient transport to the highly productive epilimnion.

Carbon dioxide as an under-ice lethal control for invasive fishes

Released May 24, 2017 00:00 EST

2017, Biological Invasions

Aaron R. Cupp, Zebadiah Woiak, Richard A. Erickson, Jon Amberg, Mark Gaikowski

Resource managers need effective tools to control invasive fish populations. In this study, we tested under-ice carbon dioxide (CO2) injection as a novel piscicide method for non-native Silver Carp (Hypophthalmichthys molitrix), Bighead Carp (Hypophthalmichthys nobilis), Grass Carp (Ctenopharyngodon idella), Common Carp (Cyprinus carpio) and native Bigmouth Buffalo (Ictiobus cyprinellus). Fish were held overwinter in nine outdoor ponds (0.04 ha surface area; 340,000 L volume) treated with no CO2 (control), 43.5–44.0 kg CO2 (low treatment), and 87.5–88.5 kg CO2 (high treatment). Ponds were harvested immediately after ice-out to assess survival and condition. Resulting survival in low (mean = 32%) and high (mean = 5%) CO2-treated ponds was significantly lower than untreated control ponds (mean = 84%). Lethal efficacy varied across species with no Bighead Carp, Silver Carp, or Bigmouth Buffalo surviving the high CO2 treatment. External infections were observed more frequently after CO2 treatments (means = 49–67%) relative to untreated ponds (mean = 2%), suggesting a secondary mechanism for poor survival. This study demonstrates that CO2 can be used as a lethal control for invasive fishes, but effectiveness may vary by species and CO2concentration.

Bayesian methods to estimate urban growth potential

Released May 24, 2017 00:00 EST

2017, Landscape and Urban Planning (163) 1-16

Jordan W. Smith, Lindsey S. Smart, Monica Dorning, Lauren Nicole Dupéy, Andréanne Méley, Ross K. Meentemeyer

Urban growth often influences the production of ecosystem services. The impacts of urbanization on landscapes can subsequently affect landowners’ perceptions, values and decisions regarding their land. Within land-use and land-change research, very few models of dynamic landscape-scale processes like urbanization incorporate empirically-grounded landowner decision-making processes. Very little attention has focused on the heterogeneous decision-making processes that aggregate to influence broader-scale patterns of urbanization. We examine the land-use tradeoffs faced by individual landowners in one of the United States’ most rapidly urbanizing regions − the urban area surrounding Charlotte, North Carolina. We focus on the land-use decisions of non-industrial private forest owners located across the region’s development gradient. A discrete choice experiment is used to determine the critical factors influencing individual forest owners’ intent to sell their undeveloped properties across a series of experimentally varied scenarios of urban growth. Data are analyzed using a hierarchical Bayesian approach. The estimates derived from the survey data are used to modify a spatially-explicit trend-based urban development potential model, derived from remotely-sensed imagery and observed changes in the region’s socioeconomic and infrastructural characteristics between 2000 and 2011. This modeling approach combines the theoretical underpinnings of behavioral economics with spatiotemporal data describing a region’s historical development patterns. By integrating empirical social preference data into spatially-explicit urban growth models, we begin to more realistically capture processes as well as patterns that drive the location, magnitude and rates of urban growth.

Climate change as a long-term stressor for the fisheries of the Laurentian Great Lakes of North America

Released May 24, 2017 00:00 EST

2017, Reviews in Fish Biology and Fisheries

Paris D. Collingsworth, David Bunnell, Michael W. Murray, Yu-Chun Kao, Zachary S. Feiner, Randall M. Claramunt, Brent M. Lofgren, Tomas O. Höök, Stuart A. Ludsin

The Laurentian Great Lakes of North America provide valuable ecosystem services, including fisheries, to the surrounding population. Given the prevalence of other anthropogenic stressors that have historically affected the fisheries of the Great Lakes (e.g., eutrophication, invasive species, overfishing), climate change is often viewed as a long-term stressor and, subsequently, may not always be prioritized by managers and researchers. However, climate change has the potential to negatively affect fish and fisheries in the Great Lakes through its influence on habitat. In this paper, we (1) summarize projected changes in climate and fish habitat in the Great Lakes; (2) summarize fish responses to climate change in the Great Lakes; (3) describe key interactions between climate change and other stressors relevant to Great Lakes fish, and (4) summarize how climate change can be incorporated into fisheries management. In general, fish habitat is projected to be characterized by warmer temperatures throughout the water column, less ice cover, longer periods of stratification, and more frequent and widespread periods of bottom hypoxia in productive areas of the Great Lakes. Based solely on thermal habitat, fish populations theoretically could experience prolonged optimal growth environment within a changing climate, however, models that assess physical habitat influences at specific life stages convey a more complex picture. Looking at specific interactions with other stressors, climate change may exacerbate the negative impacts of both eutrophication and invasive species for fish habitat in the Great Lakes. Although expanding monitoring and research to consider climate change interactions with currently studied stressors, may offer managers the best opportunity to keep the valuable Great Lakes fisheries sustainable, this expansion is globally applicable for large lake ecosystem dealing with multiple stressors in the face of continued human-driven changes.

A population on the rise: The origin of deepwater sculpin in Lake Ontario

Released May 24, 2017 00:00 EST

2017, Journal of Great Lakes Research

Amy B. Welsh, Kim T. Scribner, Wendylee Stott, Maureen Walsh

Deepwater sculpin, Myoxocephalus thompsonii, were thought to have been extirpated from Lake Ontario. However, in recent years, abundance has increased and recruitment has been documented. There are two hypotheses concerning the origin of the current Lake Ontario deepwater sculpin population. First, individuals from the upper Great Lakes may have recolonized Lake Ontario. Alternatively, the Lake Ontario population may have not been extirpated, and the remnant population has recovered naturally. To test these hypotheses, eight microsatellite loci were used to analyze samples from the current Lake Ontario population, museum specimens from the historic Lake Ontario population, and current upper Great Lakes populations. The genetic data suggest that historically throughout the Great Lakes, deepwater sculpin exhibited low levels of spatial genetic structure. Approximate Bayesian Computation analyses support the hypothesis that the current Lake Ontario population is more closely related to populations in the upper Great Lakes than to the historic Lake Ontario samples, indicating that the current Lake Ontario population likely resulted from recolonization from the Upper Great Lakes. The current Lake Ontario population has reduced allelic diversity relative to upper Great Lakes populations, indicating a possible founder effect. This study demonstrates the role life history variation can play in recolonization success. The pelagic larval phase of the deepwater sculpin allowed recolonization of Lake Ontario via passive larval drift.

Variation in species-level plant functional traits over wetland indicator status categories

Released May 24, 2017 00:00 EST

2017, Ecology and Evolution

Miles E. McCoy-Sulentic, Thomas E. Kolb, David M. Merritt, Emily C. Palmquist, Barbara Ralston, Daniel A. Sarr

Wetland indicator status (WIS) describes the habitat affinity of plant species and is used in wetland delineations and resource inventories. Understanding how species-level functional traits vary across WIS categories may improve designations, elucidate mechanisms of adaptation, and explain habitat optima and niche. We investigated differences in species-level traits of riparian flora across WIS categories, extending their application to indicate hydrologic habitat. We measured or compiled data on specific leaf area (SLA), stem specific gravity (SSG), seed mass, and mature height of 110 plant species that occur along the Colorado River in Grand Canyon, Arizona. Additionally, we measured leaf δ13C, δ15N, % carbon, % nitrogen, and C/N ratio of 56 species with C3 photosynthesis. We asked the following: (i) How do species-level traits vary over WIS categories? (ii) Does the pattern differ between herbaceous and woody species? (iii) How well do multivariate traits define WIS categories? (iv) Which traits are correlated? The largest trait differences among WIS categories for herbaceous species occurred for SSG, seed mass, % leaf carbon and height, and for woody species occurred for height, SSG, and δ13C. SSG increased and height decreased with habitat aridity for both woody and herbaceous species. The δ13C and hence water use efficiency of woody species increased with habitat aridity. Water use efficiency of herbaceous species increased with habitat aridity via greater occurrence of C4 grasses. Multivariate trait assemblages differed among WIS categories. Over all species, SLA was correlated with height, δ13C, % leaf N, and C/N; height was correlated with SSG and % leaf C; SSG was correlated with % leaf C. Adaptations of both herbaceous and woody riparian species to wet, frequently inundated habitats include low-density stem tissue. Adaptations to drier habitats in the riparian zone include short, high-density cavitation-resistant stem tissue, and high water use efficiency. The results enhance understanding about using traits to describe plant habitat in riparian systems.

Estimating inbreeding rates in natural populations: Addressing the problem of incomplete pedigrees

Released May 24, 2017 00:00 EST

2017, Journal of Heredity

Mark P. Miller, Susan M. Haig, Jonathan D. Ballou, E. Ashley Steel

Understanding and estimating inbreeding is essential for managing threatened and endangered wildlife populations. However, determination of inbreeding rates in natural populations is confounded by incomplete parentage information. We present an approach for quantifying inbreeding rates for populations with incomplete parentage information. The approach exploits knowledge of pedigree configurations that lead to inbreeding coefficients of F = 0.25 and F = 0.125, allowing for quantification of Pr(I|k): the probability of observing pedigree I given the fraction of known parents (k). We developed analytical expressions under simplifying assumptions that define properties and behavior of inbreeding rate estimators for varying values of k. We demonstrated that inbreeding is overestimated if Pr(I|k) is not taken into consideration and that bias is primarily influenced by k. By contrast, our new estimator, incorporating Pr(I|k), is unbiased over a wide range of values of kthat may be observed in empirical studies. Stochastic computer simulations that allowed complex inter- and intragenerational inbreeding produced similar results. We illustrate the effects that accounting for Pr(I|k) can have in empirical data by revisiting published analyses of Arabian oryx (Oryx leucoryx) and Red deer (Cervus elaphus). Our results demonstrate that incomplete pedigrees are not barriers for quantifying inbreeding in wild populations. Application of our approach will permit a better understanding of the role that inbreeding plays in the dynamics of populations of threatened and endangered species and may help refine our understanding of inbreeding avoidance mechanisms in the wild.

Mechanisms of nitrogen deposition effects on temperate forest lichens and trees

Released May 24, 2017 00:00 EST

2017, Ecosphere (8)

Therese S. Carter, Christopher M. Clark, Mark E. Fenn, Sarah E. Jovan, Steven Perakis, Jennifer Riddell, Paul G. Schaberg, Tara Greaver, Meredith Hastings

We review the mechanisms of deleterious nitrogen (N) deposition impacts on temperate forests, with a particular focus on trees and lichens. Elevated anthropogenic N deposition to forests has varied effects on individual organisms depending on characteristics both of the N inputs (form, timing, amount) and of the organisms (ecology, physiology) involved. Improved mechanistic knowledge of these effects can aid in developing robust predictions of how organisms respond to either increases or decreases in N deposition. Rising N levels affect forests in micro- and macroscopic ways from physiological responses at the cellular, tissue, and organism levels to influencing individual species and entire communities and ecosystems. A synthesis of these processes forms the basis for the overarching themes of this paper, which focuses on N effects at different levels of biological organization in temperate forests. For lichens, the mechanisms of direct effects of N are relatively well known at cellular, organismal, and community levels, though interactions of N with other stressors merit further research. For trees, effects of N deposition are better understood for N as an acidifying agent than as a nutrient; in both cases, the impacts can reflect direct effects on short time scales and indirect effects mediated through long-term soil and belowground changes. There are many gaps on fundamental N use and cycling in ecosystems, and we highlight the most critical gaps for understanding potential deleterious effects of N deposition. For lichens, these gaps include both how N affects specific metabolic pathways and how N is metabolized. For trees, these gaps include understanding the direct effects of N deposition onto forest canopies, the sensitivity of different tree species and mycorrhizal symbionts to N, the influence of soil properties, and the reversibility of N and acidification effects on plants and soils. Continued study of how these N response mechanisms interact with one another, and with other dimensions of global change, remains essential for predicting ongoing changes in lichen and tree populations across North American temperate forests.

Bacteria versus selenium: A view from the inside out

Released May 24, 2017 00:00 EST

2017, Book chapter, Selenium in plants

Lucian Staicu, Ronald S. Oremland, Ryuta Tobe, Hisaaki Mihara

Bacteria and selenium (Se) are closely interlinked as the element serves both essential nutrient requirements and energy generation functions. However, Se can also behave as a powerful toxicant for bacterial homeostasis. Conversely, bacteria play a tremendous role in the cycling of Se between different environmental compartments, and bacterial metabolism has been shown to participate to all valence state transformations undergone by Se in nature. Bacteria possess an extensive molecular repertoire for Se metabolism. At the end of the 1980s, a novel mode of anaerobic respiration based on Se oxyanions was experimentally documented for the first time. Following this discovery, specific enzymes capable of reducing Se oxyanions and harvesting energy were found in a number of anaerobic bacteria. The genes involved in the expression of these enzymes have later been identified and cloned. This iterative approach undertaken outside-in led to the understanding of the molecular mechanisms of Se transformations in bacteria. Based on the extensive knowledge accumulated over the years, we now have a full(er) view from the inside out, from DNA-encoding genes to enzymes and thermodynamics. Bacterial transformations of Se for assimilatory purposes have been the object of numerous studies predating the investigation of Se respiration. Remarkable contributions related to the understating of the molecular picture underlying seleno-amino acid biosynthesis are reviewed herein. Under certain circumstances, Se is a toxicant for bacterial metabolism and bacteria have evolved strategies to counteract this toxicity, most notably by the formation of elemental Se (nano)particles. Several biotechnological applications, such as the production of functional materials and the biofortification of crop species using Se-utilizing bacteria, are presented in this chapter.

Assessment of continuous oil and gas resources in the Neuquén Basin Province, Argentina, 2016

Released May 23, 2017 13:00 EST

2017, Fact Sheet 2017-3025

Christopher J. Schenk, Timothy R. Klett, Marilyn E. Tennyson, Tracey J. Mercier, Janet K. Pitman, Stephanie B. Gaswirth, Thomas M. Finn, Michael E. Brownfield, Phuong A. Le, Heidi M. Leathers-Miller, Kristen R. Marra

Using a geology-based assessment methodology, the U.S. Geological Survey assessed undiscovered, technically recoverable mean continuous resources of 14.4 billion barrels of oil and 38 trillion cubic feet of gas in the Neuquén Basin Province, Argentina.

Geomorphological evidence for ground ice on dwarf planet Ceres

Released May 23, 2017 00:00 EST

2017, Nature Geoscience (10) 338-343

Britney E. Schmidt, Kynan H. G. Hughson, Heather T. Chilton, Jennifer E. C. Scully, Thomas Platz, Andreas Nathues, Hanna Sizemore, Michael Bland, Shane Byrne, Simone Marchi, David O'Brien, Norbert Schorghofer, Harald Hiesinger, Ralf Jaumann, Jan Hendrick Pasckert, Justin D. Lawrence, Debra Buzckowski, Julie C. Castillo-Rogez, Mark V. Sykes, Paul M. Schenk, Maria-Cristina DeSanctis, Giuseppe Mitri, Michelangelo Formisano, Jian-Yang Li, Vishnu Reddy, Lucille Le Corre, Christopher T. Russell, Carol A. Raymond

Five decades of observations of Ceres suggest that the dwarf planet has a composition similar to carbonaceous meteorites and may have an ice-rich outer shell protected by a silicate layer. NASA’s Dawn spacecraft has detected ubiquitous clays, carbonates and other products of aqueous alteration across the surface of Ceres, but surprisingly it has directly observed water ice in only a few areas. Here we use Dawn Framing Camera observations to analyse lobate morphologies on Ceres’ surface and we infer the presence of ice in the upper few kilometres of Ceres. We identify three distinct lobate morphologies that we interpret as surface flows: thick tongue-shaped, furrowed flows on steep slopes; thin, spatulate flows on shallow slopes; and cuspate sheeted flows that appear fluidized. The shapes and aspect ratios of these flows are different from those of dry landslides—including those on ice-poor Vesta—but are morphologically similar to ice-rich flows on other bodies, indicating the involvement of ice. Based on the geomorphology and poleward increase in prevalence of these flows, we suggest that the shallow subsurface of Ceres is comprised of mixtures of silicates and ice, and that ice is most abundant near the poles.

Evaluating land-use change scenarios for the Puget Sound Basin, Washington, within the ecosystem recovery target model-based framework

Released May 23, 2017 00:00 EST

2017, Open-File Report 2017-1057

Miguel Villarreal, Bill Labiosa, Danielle Aiello

The Puget Sound Basin, Washington, has experienced rapid urban growth in recent decades, with varying impacts to local ecosystems and natural resources. To plan for future growth, land managers often use scenarios to assess how the pattern and volume of growth may affect natural resources. Using three different land-management scenarios for the years 2000–2060, we assessed various spatial patterns of urban growth relative to maps depicting a model-based characterization of the ecological integrity and recent development pressure of individual land parcels. The three scenarios depict future trajectories of land-use change under alternative management strategies—status quo, managed growth, and unconstrained growth. The resulting analysis offers a preliminary assessment of how future growth patterns in the Puget Sound Basin may impact land targeted for conservation and how short-term metrics of land-development pressure compare to longer term growth projections.

Bridge scour countermeasure assessments at select bridges in the United States, 2014–16

Released May 23, 2017 00:00 EST

2017, Open-File Report 2017-1048

Taylor J. Dudunake, Richard J. Huizinga, Ryan L. Fosness

In 2009, the Federal Highway Administration published Hydraulic Engineering Circular No. 23 (HEC-23) to provide specific design and implementation guidelines for bridge scour and stream instability countermeasures. However, the effectiveness of countermeasures implemented over the past decade following those guidelines has not been evaluated. Therefore, in 2013, the U.S. Geological Survey, in cooperation with the Federal Highway Administration, began a study to assess the current condition of bridge-scour countermeasures at selected sites to evaluate their effectiveness. Bridge-scour countermeasures were assessed during 2014-2016. Site assessments included reviewing countermeasure design plans, summarizing the peak and daily streamflow history, and assessments at each site. Each site survey included a photo log summary, field form, and topographic and bathymetric geospatial data and metadata. This report documents the study area and site-selection criteria, explains the survey methods used to evaluate the condition of countermeasures, and presents the complete documentation for each countermeasure assessment.

Oregon OCS seafloor mapping: Selected lease blocks relevant to renewable energy

Released May 23, 2017 00:00 EST

2017, Open-File Report 2017-1045

Guy R. Cochrane, Lenaïg G. Hemery, Sarah K. Henkel

In 2014 the U.S. Geological Survey (USGS) and the Bureau of Ocean Energy Management (BOEM) entered into Intra-agency agreement M13PG00037 to map an area of the Oregon Outer Continental Shelf (OCS) off of Coos Bay, Oregon, under consideration for development of a floating wind energy farm. The BOEM requires seafloor mapping and site characterization studies in order to evaluate the impact of seafloor and sub-seafloor conditions on the installation, operation, and structural integrity of proposed renewable energy projects, as well as to assess the potential effects of construction and operations on archaeological resources. The mission of the USGS is to provide geologic, topographic, and hydrologic information that contributes to the wise management of the Nation's natural resources and that promotes the health, safety, and well being of the people. This information consists of maps, databases, and descriptions and analyses of the water, energy, and mineral resources, land surface, underlying geologic structure, and dynamic processes of the earth.

For the Oregon OCS study, the USGS acquired multibeam echo sounder and seafloor video data surrounding the proposed development site, which is 95 km2 in area and 15 miles offshore from Coos Bay. The development site had been surveyed by Solmar Hydro Inc. in 2013 under a contract with WindFloat Pacific. The USGS subsequently produced a bathymetry digital elevation model and a backscatter intensity grid that were merged with existing data collected by the contractor. The merged grids were published along with visual observations of benthic geo-habitat from the video data in an associated USGS data release (Cochrane and others, 2015).

This report includes the results of analysis of the video data conducted by Oregon State University and the geo-habitat interpretation of the multibeam echo sounder (MBES) data conducted by the USGS. MBES data was published in Cochrane and others (2015). Interpretive data associated with this publication is published in Cochrane (2017). All the data is provided as geographic information system (GIS) files that contain both Esri ArcGIS geotiffs or shapefiles. For those who do not own the full suite of Esri GIS and mapping software, the data can be read using Esri ArcReader, a free viewer that is available at (last accessed August 29, 2016). Web services, which consist of standard implementations of ArcGIS representational state transfer (REST) Service and Open Geospatial Consortium (OGC) GIS web map service (WMS), also are available for all published GIS data. Web services were created using an ArcGIS service definition file, resulting in data layers that are symbolized as shown on the associated report figures. Both the ArcGIS REST Service and OGC WMS Service include all the individual GIS layers. Data layers are bundled together in a map-area web service; however, each layer can be symbolized and accessed individually after the web service is ingested into a desktop application or web map. Web services enable users to download and view data, as well as to easily add data to their own workflows, using any browser-enabled, standalone or mobile device.

Though the surficial substrate is dominated by combinations of mud and sand substrate, a diverse assortment of geomorphologic features are related to geologic processes—one anticlinal ridge where bedrock is exposed, a slump and associated scarps, and pockmarks. Pockmarks are seen in the form of fields of small pockmarks, a lineation of large pockmarks with methanogenic carbonates, and areas of large pockmarks that have merged into larger variously shaped depressions. The slump appears to have originated at the pockmark lineation. Video-supervised numerical analysis of the MBES backscatter intensity data and vector ruggedness derived from the MBES bathymetry data was used to produce a substrate model called a seafloor character raster for the study area. The seafloor character raster consists of three substrate classes: soft-flat areas, hard-flat areas, and hard-rugged areas. A Coastal and Marine Ecological Classification Standard (CMECS) geoform and substrate map was also produced using depth, slope, and benthic position index classes to delineate geoform boundaries. Seven geoforms were identified in this process, including ridges, slump scars, slump deposits, basins, and pockmarks.

Statistical analysis of the video data for correlations between substrate, depth, and invertebrate assemblages resulted in the identification of seven biomes: three hard-bottom biomes and four softbottom biomes. A similar analysis of vertebrate observations produces a similar set of biomes. The biome between-group dissimilarity was very high or high. Invertebrates alone represent most of the structure of the whole benthic community into different assemblages. A biotope map was generated using the seafloor character raster and the substrate and depth values of the biomes. Hard substrate biotopes were small in size and were located primarily on the ridge and in pockmarks along the pockmark lineation. The soft-bottom bitopes consisted of large contiguous areas delimited by isobaths.

Multiscale perspectives of fire, climate and humans in western North America and the Jemez Mountains, USA

Released May 23, 2017 00:00 EST

2016, Philosophical Transactions of the Royal Society B: Biological Sciences (371)

Thomas W. Swetnam, Joshua Farella, Christopher I. Roos, Matthew J. Liebmann, Donald A. Falk, Craig D. Allen

Interannual climate variations have been important drivers of wildfire occurrence in ponderosa pine forests across western North America for at least 400 years, but at finer scales of mountain ranges and landscapes human land uses sometimes over-rode climate influences. We reconstruct and analyse effects of high human population densities in forests of the Jemez Mountains, New Mexico from ca 1300 CE to Present. Prior to the 1680 Pueblo Revolt, human land uses reduced the occurrence of widespread fires while simultaneously adding more ignitions resulting in many small-extent fires. During the 18th and 19th centuries, wet/dry oscillations and their effects on fuels dynamics controlled widespread fire occurrence. In the late 19th century, intensive livestock grazing disrupted fuels continuity and fire spread and then active fire suppression maintained the absence of widespread surface fires during most of the 20th century. The abundance and continuity of fuels is the most important controlling variable in fire regimes of these semi-arid forests. Reduction of widespread fires owing to reduction of fuel continuity emerges as a hallmark of extensive human impacts on past forests and fire regimes.

Flood-frequency characteristics of Wisconsin streams

Released May 22, 2017 11:15 EST

2017, Scientific Investigations Report 2016-5140

John F. Walker, Marie C. Peppler, Mari E. Danz, Laura E. Hubbard

Flood-frequency characteristics for 360 gaged sites on unregulated rural streams in Wisconsin are presented for percent annual exceedance probabilities ranging from 0.2 to 50 using a statewide skewness map developed for this report. Equations of the relations between flood-frequency and drainage-basin characteristics were developed by multiple-regression analyses. Flood-frequency characteristics for ungaged sites on unregulated, rural streams can be estimated by use of the equations presented in this report. The State was divided into eight areas of similar physiographic characteristics. The most significant basin characteristics are drainage area, soil saturated hydraulic conductivity, main-channel slope, and several land-use variables. The standard error of prediction for the equation for the 1-percent annual exceedance probability flood ranges from 56 to 70 percent for Wisconsin Streams; these values are larger than results presented in previous reports. The increase in the standard error of prediction is likely due to increased variability of the annual-peak discharges, resulting in increased variability in the magnitude of flood peaks at higher frequencies. For each of the unregulated rural streamflow-gaging stations, a weighted estimate based on the at-site log Pearson type III analysis and the multiple regression results was determined. The weighted estimate generally has a lower uncertainty than either the Log Pearson type III or multiple regression estimates. For regulated streams, a graphical method for estimating flood-frequency characteristics was developed from the relations of discharge and drainage area for selected annual exceedance probabilities. Graphs for the major regulated streams in Wisconsin are presented in the report.

Host density increases parasite recruitment but decreases host risk in a snail-trematode system

Released May 22, 2017 00:00 EST

2017, Ecology

Julia C Buck, R.F. Hechinger, A.C. Wood, T.E. Stewart, A.M. Kuris, Kevin D. Lafferty

Most species aggregate in local patches. High host density in patches increases contact rate between hosts and parasites, increasing parasite transmission success. At the same time, for environmentally-transmitted parasites, high host density can decrease infection risk to individual hosts, because infective stages are divided among all hosts in a patch, leading to safety in numbers. We tested these predictions using the California horn snail, Cerithideopsis californica (=Cerithidea californica), which is the first intermediate host for at least 19 digenean trematode species in California estuaries. Snails become infected by ingesting trematode eggs or through penetration by free-swimming miracidia that hatch from trematode eggs deposited with final-host (bird or mammal) feces. This complex life cycle decouples infective-stage production from transmission, raising the possibility of an inverse relationship between host density and infection risk. In a field survey, higher snail density was associated with increased trematode (infected snail) density, but decreased trematode prevalence, consistent with either safety in numbers, parasitic castration, or both. To determine the extent to which safety in numbers drove the negative snail density-trematode prevalence association, we manipulated uninfected snail density in 83 cages at eight sites within Carpinteria Salt Marsh (CA, USA). At each site, we quantified snail density and used data on final-host (bird and raccoon) distributions to control for between-site variation in infective-stage supply. After three months, overall trematode infections per cage increased with snail-biomass density. For egg-transmitted trematodes, per-snail infection risk decreased with snail-biomass density in the cage and surrounding area, whereas per-snail infection risk did not decrease for miracidium-transmitted trematodes. Furthermore, both trematode recruitment and infection risk increased with infective-stage input, but this was significant only for miracidium-transmitted species. A model parameterized with our experimental results and snail densities from 524 field transects estimated that safety in numbers, when combined with host aggregation, halved per-capita infection risk in this snail population. We conclude that, depending on transmission mode, host density can enhance parasite recruitment and reduce per-capita infection risk.

Sculpted by water, elevated by earthquakes—The coastal landscape of Glacier Bay National Park, Alaska

Released May 22, 2017 00:00 EST

2017, General Information Product 177

Robert C. Witter, Adam LeWinter, Adrian M. Bender, Craig Glennie, David Finnegan

Within Glacier Bay National Park in southeastern Alaska, the Fairweather Fault represents the onshore boundary between two of Earth’s constantly moving tectonic plates: the North American Plate and the Yakutat microplate. Satellite measurements indicate that during the past few decades the Yakutat microplate has moved northwest at a rate of nearly 5 centimeters per year relative to the North American Plate. Motion between the tectonic plates results in earthquakes on the Fairweather Fault during time intervals spanning one or more centuries. For example, in 1958, a 260-kilometer section of the Fairweather Fault ruptured during a magnitude 7.8 earthquake, causing permanent horizontal (as much as 6.5 meters) and vertical (as much as 1 meter) displacement of the ground surface across the fault. Thousands to millions of years of tectonic plate motion, including earthquakes like the one in 1958, raised and shifted the ground surface across the Fairweather Fault, while rivers, glaciers, and ocean waves eroded and sculpted the surrounding landscape along the Gulf of Alaska coast in Glacier Bay National Park.

Assessing the status of sediment toxicity and macroinvertebrate communities in the Eighteenmile Creek Area of Concern, New York

Released May 22, 2017 00:00 EST

2017, Journal of Great Lakes Research (43) 55-63

Scott D. George, Brian T. Duffy, Barry P. Baldigo

In 1972, the governments of Canada and the United States committed to restoring the physical, chemical, and biological integrity of the Laurentian Great Lakes under the Great Lakes Water Quality Agreement. Through this framework, the downstream-most section of Eighteenmile Creek, a tributary to the south shore of Lake Ontario in New York, was designated as an Area of Concern (AOC) because water quality and bed sediments were contaminated by past industrial and municipal discharges, waste disposal, and pesticide usage. Five beneficial use impairments (BUIs) have been identified in the AOC including the degradation of the “benthos”, or the benthic macroinvertebrate community. This investigation used sediment toxicity testing and macroinvertebrate community assessments to determine if the toxicity of bed sediments in the AOC differed from that of an unimpacted reference stream. Results from 10-day toxicity tests indicated that survival and growth of the dipteran Chironomus dilutus and the amphipod Hyalella azteca did not differ significantly between sediments from the AOC and reference area. Analyses of benthic macroinvertebrate community integrity and structure also indicated that macroinvertebrate communities, while impacted across most sites on both streams, were generally similar between the AOC and reference area. Despite these findings, the upstream-most AOC site consistently scored poorly in all analyses, which suggests that localized sediment toxicity may exist in the AOC, even if large scale differences between the AOC and a comparable reference stream are minimal.

Antifungal bacteria on woodland salamander skin exhibit high taxonomic diversity and geographic variability

Released May 22, 2017 00:00 EST

2017, Applied and Environmental Microbiology (83)

Carly R. Muletz-Wolz, Graziella V. DiRenzo, Stephanie A. Yarwood, Evan H. Campbell Grant, Robert C. Fleischer, Karen R. Lips

Diverse bacteria inhabit amphibian skin; some of those bacteria inhibit growth of the fungal pathogen Batrachochytrium dendrobatidis. Yet there has been no systematic survey of anti-B. dendrobatidis bacteria across localities, species, and elevations. This is important given geographic and taxonomic variations in amphibian susceptibility to B. dendrobatidis. Our collection sites were at locations within the Appalachian Mountains where previous sampling had indicated low B. dendrobatidis prevalence. We determined the numbers and identities of anti-B. dendrobatidis bacteria on 61 Plethodon salamanders (37 P. cinereus, 15 P. glutinosus, 9 P. cylindraceus) via culturing methods and 16S rRNA gene sequencing. We sampled co-occurring species at three localities and sampled P. cinereus along an elevational gradient (700 to 1,000 meters above sea level [masl]) at one locality. We identified 50 anti-B. dendrobatidis bacterial operational taxonomic units (OTUs) and found that the degree of B. dendrobatidis inhibition was not correlated with relatedness. Five anti-B. dendrobatidis bacterial strains occurred on multiple amphibian species at multiple localities, but none were shared among all species and localities. The prevalence of anti-B. dendrobatidis bacteria was higher at Shenandoah National Park (NP), VA, with 96% (25/26) of salamanders hosting at least one anti-B. dendrobatidis bacterial species compared to 50% (7/14) at Catoctin Mountain Park (MP), MD, and 38% (8/21) at Mt. Rogers National Recreation Area (NRA), VA. At the individual level, salamanders at Shenandoah NP had more anti-B. dendrobatidis bacteria per individual (μ = 3.3) than those at Catoctin MP (μ = 0.8) and at Mt. Rogers NRA (μ = 0.4). All salamanders tested negative for B. dendrobatidis. Anti-B. dendrobatidis bacterial species are diverse in central Appalachian Plethodon salamanders, and their distribution varied geographically. The antifungal bacterial species that we identified may play a protective role for these salamanders.

Potential implications of acoustic stimuli as a non-physical barrier to silver carp and bighead carp

Released May 22, 2017 00:00 EST

2017, Fisheries Management and Ecology (24) 208-216

Kelsie Murchy, Aaron R. Cupp, Jon Amberg, Brooke Vetter, Kim Fredricks, Mark Gaikowski, Allen F. Mensinger

The effectiveness of an acoustic barrier to deter the movement of silver carp, Hypophthalmichthys molitrix (Valenciennes) and bighead carp, H. nobilis (Richardson) was evaluated. A pond (10 m × 5 m × 1.2 m) was divided in half by a concrete-block barrier with a channel (1 m across) allowing fish access to each side. Underwater speakers were placed on each side of the barrier opening, and an outboard motor noise (broadband sound; 0.06–10 kHz) was broadcast to repel carp that approached within 1 m of the channel. Broadband sound was effective at reducing the number of successful crossings in schools of silver carp, bighead carp and a combined school. Repulsion rates were 82.5% (silver carp), 93.7% (bighead carp) and 90.5% (combined). This study demonstrates that broadband sound is effective in deterring carp and could be used as a deterrent in an integrated pest management system.

Investigating the landscape of Arroyo Seco—Decoding the past—A teaching guide to climate-controlled landscape evolution in a tectonically active region

Released May 19, 2017 11:00 EST

2017, Circular 1425

Emily M. Taylor, Donald S. Sweetkind, Jeremy C. Havens


Arroyo Seco is a river that flows eastward out of the Santa Lucia Range in Monterey County, California. The Santa Lucia Range is considered part of the central California Coast Range. Arroyo Seco flows out of the Santa Lucia Range into the Salinas River valley, near the town of Greenfield, where it joins the Salinas River. The Salinas River flows north into Monterey Bay about 40 miles from where it merges with Arroyo Seco. In the mountain range, Arroyo Seco has cut or eroded a broad and deep valley. This valley preserves a geologic story in the landscape that is influenced by both fault-controlled mountain building (tectonics) and sea level fluctuations (regional climate).

Broad flat surfaces called river terraces, once eroded by Arroyo Seco, can be observed along the modern drainage. In the valley, terraces are also preserved like climbing stairs up to 1,800 feet above Arroyo Seco today. These terraces mark where Arroyo Seco once flowed.The terraces were formed by the river because no matter how high they are, the terraces are covered by gravel deposits exactly like those that can be observed in the river today. The Santa Lucia Range, Arroyo Seco, and the Salinas River valley must have looked very different when the highest and oldest terraces were forming. The Santa Lucia Range may have been lower, the Arroyo Seco may have been steeper and wider, and the Salinas River valley may have been much smaller.

Arroyo Seco, like all rivers, is always changing. Some-times rivers flow very straight, and sometimes they are curvy. Sometimes rivers are cutting down or eroding the landscape, and sometimes they are not eroding but depositing material. Sometimes rivers are neither eroding nor transporting material. The influences that change the behavior of Arroyo Seco are mountain uplift caused by fault moment and sea level changes driven by regional climate change. When a stream is affected by one or both of these influences, the stream accommodates the change by eroding, depositing, and (or) changing its shape.

In the vicinity of Arroyo Seco, the geologically young faulting history is relatively well understood. Geologists have some sense of the most recent faulting event and of the faulting in the recent geologic past. The timing of regional climate changes is also well accepted. In this area, warm climate cycles tend to cause the sea level to rise, and cool climate cycles tend to cause the sea level to fall. If we understand the way the terraces form and their ages in Arroyo Seco, we can draw conclusions about whether faulting and (or) climate contributed to their formation.

This publication serves as a descriptive companion to the formal geologic map of Arroyo Seco (Taylor and Sweetkind, 2014) and is intended for use by nonscientists and students. Included is a discussion of the processes that controlled the evolution of the drainage and the formation of the terraces in Arroyo Seco. The reader is guided to well-exposed landscape features in an easily accessible environment that will help nonscientists gain an understanding of how features on a geologic map are interpreted in terms of earth processes.

U.S. Department of the Interior Climate Science Centers and U.S. Geological Survey National Climate Change and Wildlife Science Center—Annual report for 2016

Released May 19, 2017 10:15 EST

2017, Open-File Report 2017-1033

Sarah R. Weiskopf, Elda Varela Minder, Holly A. Padgett


2016 was an exciting year for the Department of the Interior (DOI) Climate Science Centers (CSCs) and the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC). In recognition of our ongoing efforts to raise awareness and provide the scientific data and tools needed to address the impacts of climate change on fish, wildlife, ecosystems, and people, NCCWSC and the CSCs received an honorable mention in the first ever Climate Adaptation Leadership Award for Natural Resources sponsored by the National Fish, Wildlife, and Plant Climate Adaptation Strategy’s Joint Implementation Working Group. The recognition is a reflection of our contribution to numerous scientific workshops and publications, provision of training for students and early career professionals, and work with Tribes and indigenous communities to improve climate change resilience across the Nation. In this report, we highlight some of the activities that took place throughout the NCCWSC and CSC network in 2016.

Community for Data Integration 2016 annual report

Released May 19, 2017 00:13 EST

2017, Open-File Report 2017-1053

Madison L. Langseth, Leslie Hsu, Jon Amberg, Norman Bliss, Andrew R. Bock, Rachel T. Bolus, R. Sky Bristol, Katherine J. Chase, Theresa M. Crimmins, Paul S. Earle, Richard Erickson, A. Lance Everette, Jeff T. Falgout, John L. Faundeen, Michael Fienen, Rusty Griffin, Michelle R. Guy, Kevin D. Henry, Nancy J. Hoebelheinrich, Randall Hunt, Vivian B. Hutchison, Drew A. Ignizio, Dana M. Infante, Catherine Jarnevich, Jeanne M. Jones, Tim Kern, Scott Leibowitz, Francis L. Lightsom, R. Lee Marsh, S. Grace McCalla, Marcia McNiff, Jeffrey T. Morisette, John C. Nelson, Tamar Norkin, Todd M. Preston, Alyssa Rosemartin, Roy Sando, Jason T. Sherba, Richard P. Signell, Benjamin M. Sleeter, Eric T. Sundquist, Colin B. Talbert, Roland J. Viger, Jake F. Weltzin, Sharon Waltman, Marc Weber, Daniel J. Wieferich, Brad Williams, Lisamarie Windham-Myers

The Community for Data Integration (CDI) represents a dynamic community of practice focused on advancing science data and information management and integration capabilities across the U.S. Geological Survey and the CDI community. This annual report describes the various presentations, activities, and outcomes of the CDI monthly forums, working groups, virtual training series, and other CDI-sponsored events in fiscal year 2016. The report also describes the objectives and accomplishments of the 13 CDI-funded projects in fiscal year 2016.

Sensitivity of lake sturgeon (Acipenser fulvescens) early life stages to 2,3,7,8-tetrachlorodibenzo-P-dioxin and 3,3′,4,4′,5-pentachlorobiphenyl

Released May 19, 2017 00:00 EST

2017, Environmental Toxicology and Chemistry (36) 988-998

Donald E. Tillitt, Justin A. Buckler, Diane Nicks, James Candrl, Rachel Claunch, Robert W. Gale, Holly J. Puglis, Edward E. Little, Tiffany L. Linbo, Mary Baker

The aquatic food web of the Great Lakes has been contaminated with polychlorinated biphenyls (PCBs) since the mid-20th century. Threats of PCB exposures to long-lived species of fish, such as lake sturgeon (Acipenser fulvescens), have been uncertain because of a lack of information on the relative sensitivity of the species. The objective of the present study was to evaluate the sensitivity of early–life stage lake sturgeon to 3,3′,4,4′,5-pentachlorobiphenyl (PCB-126) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure. Mortality, growth, morphological and tissue pathologies, swimming performance, and activity levels were used as assessment endpoints. Pericardial and yolk sac edema, tubular heart, yolk sac hemorrhaging, and small size were the most commonly observed pathologies in both TCDD and PCB-126 exposures, beginning as early as 4 d postfertilization, with many of these pathologies occurring in a dose-dependent manner. Median lethal doses for PCB-126 and TCDD in lake sturgeon were 5.4 ng/g egg (95% confidence interval, 3.9–7.4 ng/g egg) and 0.61 ng/g egg (0.47–0.82 ng/g egg), respectively. The resulting relative potency factor for PCB-126 (0.11) was greater than the World Health Organization estimate for fish (toxic equivalency factor = 0.005), suggesting that current risk assessments may underestimate PCB toxicity toward lake sturgeon. Swimming activity and endurance were reduced in lake sturgeon survivors from the median lethal doses at 60 d postfertilization. Threshold and median toxicity values indicate that lake sturgeon, like other Acipenser species, are more sensitive to PCB and TCDD than the other genus of sturgeon, Scaphirhynchus, found in North America. Indeed, lake sturgeon populations in the Great Lakes and elsewhere are susceptible to PCB/TCDD-induced developmental toxicity in embryos and reductions in swimming performance.

Thermal effect of climate change on groundwater-fed ecosystems

Released May 19, 2017 00:00 EST

2017, Water Resources Research (53) 3341-3351

Erick Burns, Yonghui Zhu, Hongbin Zhan, Michael Manga, Colin F. Williams, Steven E. Ingebritsen, Jason Dunham

Groundwater temperature changes will lag surface temperature changes from a changing climate. Steady state solutions of the heat-transport equations are used to identify key processes that control the long-term thermal response of springs and other groundwater discharge to climate change, in particular changes in (1) groundwater recharge rate and temperature and (2) land-surface temperature transmitted through the vadose zone. Transient solutions are developed to estimate the time required for new thermal signals to arrive at ecosystems. The solution is applied to the volcanic Medicine Lake highlands, California, USA, and associated springs complexes that host groundwater-dependent ecosystems. In this system, upper basin groundwater temperatures are strongly affected only by recharge conditions. However, as the vadose zone thins away from the highlands, changes in the average annual land-surface temperature also influence groundwater temperatures. Transient response to temperature change depends on both the conductive time scale and the rate at which recharge delivers heat. Most of the thermal response of groundwater at high elevations will occur within 20 years of a shift in recharge temperatures, but the large lower elevation springs will respond more slowly, with about half of the conductive response occurring within the first 20 years and about half of the advective response to higher recharge temperatures occurring in approximately 60 years.

Evaluating the impact of irrigation on surface water – groundwater interaction and stream temperature in an agricultural watershed

Released May 19, 2017 00:00 EST

2017, Science of the Total Environment (599-600) 581-596

Hedeff I. Essaid, Rodney R. Caldwell

Changes in groundwater discharge to streams caused by irrigation practices can influence stream temperature. Observations along two currently flood-irrigated reaches in the 640-square-kilometer upper Smith River watershed, an important agricultural and recreational fishing area in west-central Montana, showed a downstream temperature decrease resulting from groundwater discharge to the stream. A watershed-scale coupled surface water and groundwater flow model was used to examine changes in streamflow, groundwater discharge to the stream and stream temperature resulting from irrigation practices. The upper Smith River watershed was used to develop the model framework including watershed climate, topography, hydrography, vegetation, soil properties and current irrigation practices. Model results were used to compare watershed streamflow, groundwater recharge, and groundwater discharge to the stream for three scenarios: natural, pre-irrigation conditions (PreIrr); current irrigation practices involving mainly stream diversion for flood and sprinkler irrigation (IrrCurrent); and a hypothetical scenario with only groundwater supplying sprinkler irrigation (IrrGW). Irrigation increased groundwater recharge relative to natural PreIrr conditions because not all applied water was removed by crop evapotranspiration. Groundwater storage and groundwater discharge to the stream increased relative to natural PreIrr conditions when the source of irrigation water was mainly stream diversion as in the IrrCurrent scenario. The hypothetical IrrGW scenario, in which groundwater withdrawals were the sole source of irrigation water, resulted in widespread lowering of the water table and associated decreases in groundwater storage and groundwater discharge to the stream. A mixing analysis using model predicted groundwater discharge along the reaches suggests that stream diversion and flood irrigation, represented in the IrrCurrent scenario, has led to cooling of stream temperatures relative to natural PreIrr conditions improving fish thermal habitat. However, the decrease in groundwater discharge in the IrrGW scenario resulting from large-scale groundwater withdrawal for irrigation led to warmer than natural stream temperatures and possible degradation of fish habitat.

Estimated seepage rates from selected ditches, ponds, and lakes at the Camas National Wildlife Refuge, eastern Idaho

Released May 19, 2017 00:00 EST

2017, Journal of Environmental Management

Gordon W. Rattray

The Camas National Wildlife Refuge (Refuge) in eastern Idaho, established in 1937, contains wetlands, ponds, and wet meadows that are essential resting and feeding habitat for migratory birds and nesting habitat for waterfowl. Initially, natural sources of water supported these habitats. However, during the past few decades, changes in climate and surrounding land use have altered and reduced natural groundwater and surface-water inflows, resulting in a 5-meter decline in the water table and an earlier, and more frequent, occurrence of no flow in Camas Creek at the Refuge. Due to these changes in water availability, water management that includes extensive groundwater pumping is now necessary to maintain the wetlands, ponds, and wet meadows.

These water management activities have proven to be inefficient and expensive, and the Refuge is seeking alternative water-management options that are more efficient and less expensive. More efficient water management at the Refuge may be possible through knowledge of the seepage rates from ditches, ponds, and lakes at the Refuge. With this knowledge, water-management efficiency may be improved by natural means through selective use of water bodies with the smallest seepage rates or through engineering efforts to minimize seepage losses from water bodies with the largest seepage rates.

The U.S. Geological Survey performed field studies in 2015 and 2016 to estimate seepage rates for selected ditches, ponds, and lakes at the Refuge. Estimated seepage rates from ponds and lakes ranged over an order of magnitude, from 3.4 ± 0.2 to 103.0 ± 0.5 mm/d, with larger seepage rates calculated for Big Pond and Redhead Pond, intermediate seepage rates calculated for Two-way Pond, and smaller seepages rates calculated for the south arm of Sandhole Lake. Estimated seepage losses from two reaches of Main Diversion Ditch were 21 ± 2 and 17 ± 2 percent/km. These losses represent seepage rates of about 890 and 860 mm/d, which are one- to two-orders-of-magnitude larger than seepage rates from the ponds and lake.

The depth-integrated vertical hydraulic conductivity (Kv) for sediment underlying the ponds and lake was the primary control of seepage rates. The Kv's were 30 and 34 m/d for Big Pond, 14 and 18 m/d for Toomey Pond, 8 and 10 m/d for Two-way Pond, and 47 m/d for the north arm of Sandhole Lake.

Unraveling the disease consequences and mechanisms of modular structure in animal social networks

Released May 19, 2017 00:00 EST

2017, PNAS (16) 4165-4170

Pratha Sah, Stephan T. Leu, Paul C. Cross, Peter J. Hudson, Shweta Bansal

Disease risk is a potential cost of group living. Although modular organization is thought to reduce this cost in animal societies, empirical evidence toward this hypothesis has been conflicting. We analyzed empirical social networks from 43 animal species to motivate our study of the epidemiological consequences of modular structure in animal societies. From these empirical studies, we identified the features of interaction patterns associated with network modularity and developed a theoretical network model to investigate when and how subdivisions in social networks influence disease dynamics. Contrary to prior work, we found that disease risk is largely unaffected by modular structure, although social networks beyond a modular threshold experience smaller disease burden and longer disease duration. Our results illustrate that the lowering of disease burden in highly modular social networks is driven by two mechanisms of modular organization: network fragmentation and subgroup cohesion. Highly fragmented social networks with cohesive subgroups are able to structurally trap infections within a few subgroups and also cause a structural delay to the spread of disease outbreaks. Finally, we show that network models incorporating modular structure are necessary only when prior knowledge suggests that interactions within the population are highly subdivided. Otherwise, null networks based on basic knowledge about group size and local contact heterogeneity may be sufficient when data-limited estimates of epidemic consequences are necessary. Overall, our work does not support the hypothesis that modular structure universally mitigates the disease impact of group living.

Persistence of historical population structure in an endangered species despite near-complete biome conversion in California's San Joaquin Desert

Released May 19, 2017 00:00 EST

2017, Molecular Ecology

Jonathan Q. Richmond, Dustin A. Wood, Michael F. Westphal, Amy Vandergast, Adam D. Leache, Lawrence Saslaw, H. Scott Butterfield, Robert N. Fisher

Genomic responses to habitat conversion can be rapid, providing wildlife managers with time-limited opportunities to enact recovery efforts that use population connectivity information that reflects predisturbance landscapes. Despite near-complete biome conversion, such opportunities may still exist for the endemic fauna and flora of California's San Joaquin Desert, but comprehensive genetic data sets are lacking for nearly all species in the region. To fill this knowledge gap, we studied the rangewide population structure of the endangered blunt-nosed leopard lizard Gambelia sila, a San Joaquin Desert endemic, using restriction site-associated DNA (RAD), microsatellite and mtDNA data to test whether admixture patterns and estimates of effective migration surfaces (EEMS) can identify land areas with high population connectivity prior to the conversion of native xeric habitats. Clustering and phylogenetic analyses indicate a recent shared history between numerous isolated populations and EEMS reveals latent signals of corridors and barriers to gene flow over areas now replaced by agriculture and urbanization. Conflicting histories between the mtDNA and nuclear genomes are consistent with hybridization with the sister species G. wislizenii, raising important questions about where legal protection should end at the southern range limit of G. sila. Comparative analysis of different data sets also adds to a growing list of advantages in using RAD loci for genetic studies of rare species. We demonstrate how the results of this work can serve as an evolutionary guidance tool for managing endemic, arid-adapted taxa in one of the world's most compromised landscapes.

Map projections and the Internet: Chapter 4

Released May 19, 2017 00:00 EST

2017, Book chapter, Choosing a map projection

Fritz Kessler, Sarah E. Battersby, Michael P. Finn, Keith Clarke

The field of map projections can be described as mathematical, static, and challenging. However, this description is evolving in concert with the development of the Internet. The Internet has enabled new outlets for software applications, learning, and interaction with and about map projections . This chapter examines specific ways in which the Internet has moved map projections from a relatively obscure paper-based setting to a more engaging and accessible online environment. After a brief overview of map projections, this chapter discusses four perspectives on how map projections have been integrated into the Internet. First, map projections and their role in web maps and mapping services is examined. Second, an overview of online atlases and the map projections chosen for their maps is presented. Third, new programming languages and code libraries that enable map projections to be included in mapping applications are reviewed. Fourth, the Internet has facilitated map projection education and research especially with the map reader’s comprehension and understanding of complex topics like map projection distortion is discussed.

Estimates of immediate effects on world markets of a hypothetical disruption to Russia’s supply of six mineral commodities

Released May 18, 2017 13:15 EST

2017, Open-File Report 2017-1023

Elena Safirova, James J. Barry, Sinan Hastorun, Grecia R. Matos, Alberto Alexander Perez, George M. Bedinger, E. Lee Bray, Stephen M. Jasinski, Peter H. Kuck, Patricia J. Loferski

The potential immediate effects of a hypothetical shock to Russia’s supply of selected mineral commodities on the world market and on individual countries were determined and monetized (in 2014 U.S. dollars). The mineral commodities considered were aluminum (refined primary), nickel (refined primary), palladium (refined) and platinum (refined), potash, and titanium (mill products), and the regions and countries of primary interest were the United States, the European Union (EU–28), and China. The shock is assumed to have infinite duration, but only the immediate effects, those limited by a 1-year period, are considered.

A methodology for computing and monetizing the potential impacts was developed. Then the data pertaining to all six mineral commodities were collected and the most likely effects were computed. Because of the uncertainties associated with some of the data, sensitivity analyses were conducted to confirm the validity of the results.

Results indicate that the impact on the United States arising from a shock to Russia’s supply, in terms of the value of net exports, would range from a gain of \$336 million for titanium mill products to a loss of \$237 million for potash; thus, the overall effect of a supply shock is likely to be quite modest. The study also demonstrates that, taken alone, Russia’s share in the world production of a particular commodity is not necessarily indicative of the size of potential impacts resulting from a supply shock; other factors, such as prices, domestic production, and the structure of international commodity flows were found to be important as well.

Effect of salinity on mercury methylating benthic microbes and their activities in Great Salt Lake, Utah

Released May 18, 2017 00:00 EST

2017, Science of the Total Environment (581-582) 495-506

Eric S. Boyd, Ri-Qing Yu, Tamar Barkay, Trinity L. Hamilton, Bonnie K. Baxter, David L. Naftz, Mark Marvin-DiPasquale

Surface water and biota from Great Salt Lake (GSL) contain some of the highest documented concentrations of total mercury (THg) and methylmercury (MeHg) in the United States. In order to identify potential biological sources of MeHg and controls on its production in this ecosystem, THg and MeHg concentrations, rates of Hg(II)-methylation and MeHg degradation, and abundances and compositions of archaeal and bacterial 16 rRNA gene transcripts were determined in sediment along a salinity gradient in GSL. Rates of Hg(II)-methylation were inversely correlated with salinity and were at or below the limits of detection in sediment sampled from areas with hypersaline surface water. The highest rates of Hg(II)-methylation were measured in sediment with low porewater salinity, suggesting that benthic microbial communities inhabiting less saline environments are supplying the majority of MeHg in the GSL ecosystem. The abundance of 16S rRNA gene transcripts affiliated with the sulfate reducer Desulfobacterium sp. was positively correlated with MeHg concentrations and Hg(II)-methylation rates in sediment, indicating a potential role for this taxon in Hg(II)-methylation in low salinity areas of GSL. Reactive inorganic Hg(II) (a proxy used for Hg(II) available for methylation) and MeHg concentrations were inversely correlated with salinity. Thus, constraints imposed by salinity on Hg(II)-methylating populations and the availability of Hg(II) for methylation are inferred to result in higher MeHg production potentials in lower salinity environments. Benthic microbial MeHg degradation was also most active in lower salinity environments. Collectively, these results suggest an important role for sediment anoxia and microbial sulfate reducers in the production of MeHg in low salinity GSL sub-habitats and may indicate a role for salinity in constraining Hg(II)-methylation and MeHg degradation activities by influencing the availability of Hg(II) for methylation.

Estimating evaporative fraction from readily obtainable variables in mangrove forests of the Everglades, U.S.A.

Released May 18, 2017 00:00 EST

2017, International Journal of Remote Sensing (38) 3981-4007

Ali Levent Yagci, Joseph A. Santanello, John W. Jones, Jordan G. Barr

A remote-sensing-based model to estimate evaporative fraction (EF) – the ratio of latent heat (LE; energy equivalent of evapotranspiration –ET–) to total available energy – from easily obtainable remotely-sensed and meteorological parameters is presented. This research specifically addresses the shortcomings of existing ET retrieval methods such as calibration requirements of extensive accurate in situ micrometeorological and flux tower observations or of a large set of coarse-resolution or model-derived input datasets. The trapezoid model is capable of generating spatially varying EF maps from standard products such as land surface temperature (Ts) normalized difference vegetation index (NDVI) and daily maximum air temperature (Ta). The 2009 model results were validated at an eddy-covariance tower (Fluxnet ID: US-Skr) in the Everglades using Ts and NDVI products from Landsat as well as the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. Results indicate that the model accuracy is within the range of instrument uncertainty, and is dependent on the spatial resolution and selection of end-members (i.e. wet/dry edge). The most accurate results were achieved with the Ts from Landsat relative to the Tfrom the MODIS flown on the Terra and Aqua platforms due to the fine spatial resolution of Landsat (30 m). The bias, mean absolute percentage error and root mean square percentage error were as low as 2.9% (3.0%), 9.8% (13.3%), and 12.1% (16.1%) for Landsat-based (MODIS-based) EF estimates, respectively. Overall, this methodology shows promise for bridging the gap between temporally limited ET estimates at Landsat scales and more complex and difficult to constrain global ET remote-sensing models.

A hierarchical model for estimating the spatial distribution and abundance of animals detected by continuous-time recorders

Released May 17, 2017 00:00 EST

2017, PLoS ONE (12) 1-18

Robert Dorazio, K. Ullas Karanth


Several spatial capture-recapture (SCR) models have been developed to estimate animal abundance by analyzing the detections of individuals in a spatial array of traps. Most of these models do not use the actual dates and times of detection, even though this information is readily available when using continuous-time recorders, such as microphones or motion-activated cameras. Instead most SCR models either partition the period of trap operation into a set of subjectively chosen discrete intervals and ignore multiple detections of the same individual within each interval, or they simply use the frequency of detections during the period of trap operation and ignore the observed times of detection. Both practices make inefficient use of potentially important information in the data.

Model and data analysis

We developed a hierarchical SCR model to estimate the spatial distribution and abundance of animals detected with continuous-time recorders. Our model includes two kinds of point processes: a spatial process to specify the distribution of latent activity centers of individuals within the region of sampling and a temporal process to specify temporal patterns in the detections of individuals. We illustrated this SCR model by analyzing spatial and temporal patterns evident in the camera-trap detections of tigers living in and around the Nagarahole Tiger Reserve in India. We also conducted a simulation study to examine the performance of our model when analyzing data sets of greater complexity than the tiger data.


Our approach provides three important benefits: First, it exploits all of the information in SCR data obtained using continuous-time recorders. Second, it is sufficiently versatile to allow the effects of both space use and behavior of animals to be specified as functions of covariates that vary over space and time. Third, it allows both the spatial distribution and abundance of individuals to be estimated, effectively providing a species distribution model, even in cases where spatial covariates of abundance are unknown or unavailable. We illustrated these benefits in the analysis of our data, which allowed us to quantify differences between nocturnal and diurnal activities of tigers and to estimate their spatial distribution and abundance across the study area. Our continuous-time SCR model allows an analyst to specify many of the ecological processes thought to be involved in the distribution, movement, and behavior of animals detected in a spatial trapping array of continuous-time recorders. We plan to extend this model to estimate the population dynamics of animals detected during multiple years of SCR surveys.

Habitat suitability criteria for assessment of instream flow needs of fish

Released May 16, 2017 11:40 EST

1989, Book, Proceedings of the 1989 Georgia Water Resources Conference

Johnie H. Crance

In the western portion of the United States, competition for stream water gas often been fierce. Water resource management agencies in the southeastern United States, where water has been relatively abundant, are not being faced with similar competing demands for water, and with increasing pressures to develop and defend recommendations for protecting fish and invertebrates in streams. Streamflow depletion at any time can result in severe long-term effects on fish populations(Peters, 1982).

The allocation of stream water to any numerous instream or offstream uses is tied to the issues of water quantity, quality, and timing, which center on two critical questions: (1)when and how much water of an acceptable quality should be left in a stream, and (2) what happens if flow regimes are changed? Answers to these questions will probably be complex, but reliable answers are needed to protect instream and offstream values. If instream flow interests expect to compete with offstream uses for limited water supplies, they must be able to determine reliable and defensible methods for determining instream flow needs and demonstrate the environmental consequences of altered flow regimes.

My objectives in this paper are: (a) to present an overview of the need, development, and use of stream habitat suitability criteria, and the use of these criteria for the assessment of instream flow needs; (b) to give a status report on the plan of the National Ecology Research Center (NERC) for expansion of instream flow research in the Southeast; and (c) to discuss the relevancy of the research to river corridor management.

Characterization of the juvenile green turtle (Chelonia mydas) microbiome throughout an ontogenetic shift from pelagic to neritic habitats

Released May 16, 2017 00:00 EST

2017, PLoS ONE (12) 1-13

James T. Price, Frank V. Paladino, Margaret M. Lamont, Blair E. Witherington, Scott T. Bates, Tanya Soule

The gut microbiome of herbivorous animals consists of organisms that efficiently digest the structural carbohydrates of ingested plant material. Green turtles (Chelonia mydas) provide an interesting model of change in these microbial communities because they undergo a pronounced shift from a surface-pelagic distribution and omnivorous diet to a neritic distribution and herbivorous diet. As an alternative to direct sampling of the gut, we investigated the cloacal microbiomes of juvenile green turtles before and after recruitment to neritic waters to observe any changes in their microbial community structure. Cloacal swabs were taken from individual turtles for analysis of the 16S rRNA gene sequences using Illumina sequencing. One fecal sample was also obtained, allowing for a preliminary comparison with the bacterial community of the cloaca. We found significant variation in the juvenile green turtle bacterial communities between pelagic and neritic habitats, suggesting that environmental and dietary factors support different bacterial communities in green turtles from these habitats. This is the first study to characterize the cloacal microbiome of green turtles in the context of their ontogenetic shifts, which could provide valuable insight into the origins of their gut bacteria and how the microbial community supports their shift to herbivory.

Long-term and widespread changes in agricultural practices influence ring-necked pheasant abundance in California

Released May 16, 2017 00:00 EST

2017, Ecology and Evolution (7) 2546-2559

Peter S. Coates, Brianne E. Brussee, Kristy B. Howe, Joseph P. Fleskes, Ian Dwight, Daniel P. Connelly, Matt G. Meshriy, Scott C. Gardner

Declines in bird populations in agricultural regions of North America and Europe have been attributed to agricultural industrialization, increases in use of agrochemical application, and increased predation related to habitat modification. Based on count data compiled from Breeding Bird Survey (BBS) from 1974 to 2012, Christmas Bird Count (CBC) collected from 1914 to 2013, and hunter data from Annual Game Take Survey (AGTS) for years 1948–2010, ring-necked pheasants (Phasianus colchicus) in California have experienced substantial declines in agricultural environments. Using a modeling approach that integrates all three forms of survey data into a joint response abundance index, we found pheasant abundance was related to the amount of harvested and unharvested crop land, types of crops produced, amount of total pesticide applied, minimum temperature, precipitation, and numbers of avian competitors and predators. Specifically, major changes in agricultural practices over the last three decades were associated with declines in pheasant numbers and likely reflected widespread loss of habitat. For example, increases in cropland were associated with increased pheasant abundance during early years of study but this effect decreased through time, such that no association in recent years was evidenced. A post hoc analysis revealed that crops beneficial to pheasant abundance (e.g., barley) have declined substantially in recent decades and were replaced by less advantageous crops (e.g., nut trees). An additional analysis using a restricted data set (1990–2013) indicated recent negative impacts on pheasant numbers associated with land use practices were also associated with relatively high levels of pesticide application. Our results may provide valuable information for management policies aimed at reducing widespread declines in pheasant populations in California and may be applicable to other avian species within agricultural settings. Furthermore, this general analytical approach is not limited to pheasants and could be applied to other taxa for which multiple survey data sources exist.

Estimating loss of Brucella abortus antibodies from age-specific serological data in elk

Released May 16, 2017 00:00 EST

2017, EcoHealth

J. A. Benavides, D. Caillaud, B. M. Scurlock, E. J. Maichak, W.H. Edwards, Paul C. Cross

Serological data are one of the primary sources of information for disease monitoring in wildlife. However, the duration of the seropositive status of exposed individuals is almost always unknown for many free-ranging host species. Directly estimating rates of antibody loss typically requires difficult longitudinal sampling of individuals following seroconversion. Instead, we propose a Bayesian statistical approach linking age and serological data to a mechanistic epidemiological model to infer brucellosis infection, the probability of antibody loss, and recovery rates of elk (Cervus canadensis) in the Greater Yellowstone Ecosystem. We found that seroprevalence declined above the age of ten, with no evidence of disease-induced mortality. The probability of antibody loss was estimated to be 0.70 per year after a five-year period of seropositivity and the basic reproduction number for brucellosis to 2.13. Our results suggest that individuals are unlikely to become re-infected because models with this mechanism were unable to reproduce a significant decline in seroprevalence in older individuals. This study highlights the possible implications of antibody loss, which could bias our estimation of critical epidemiological parameters for wildlife disease management based on serological data.

Performance and retention of lightweight satellite radio tags applied to the ears of polar bears (Ursus maritimus)

Released May 16, 2017 00:00 EST

2017, Animal Biotelemetry (5) 1-11

Oystein Wiig, Erik W. Born, Kristin L. Laidre, Rune Dietz, Mikkel Villum Jensen, George M. Durner, Anthony M. Pagano, Eric V. Regehr, Michelle St. Martin, Stephen N. Atkinson, Markus Dyck


Satellite telemetry studies provide information that is critical to the conservation and management of species affected by ecological change. Here we report on the performance and retention of two types (SPOT-227 and SPOT-305A) of ear-mounted Argos-linked satellite transmitters (i.e., platform transmitter terminal, or PTT) deployed on free-ranging polar bears in Eastern Greenland, Baffin Bay, Kane Basin, the southern Beaufort Sea, and the Chukchi Sea during 2007–2013.


Transmissions from 142 out of 145 PTTs deployed on polar bears were received for an average of 69.3 days. The average functional longevity, defined as the number of days they transmitted while still attached to polar bears, for SPOT-227 was 56.8 days and for SPOT-305A was 48.6 days. Thirty-four of the 142 (24%) PTTs showed signs of being detached before they stopped transmitting, indicating that tag loss was an important aspect of tag failure. Furthermore, 10 of 26 (38%) bears that were re-observed following application of a PTT had a split ear pinna, suggesting that some transmitters were detached by force. All six PTTs that were still on bears upon recapture had lost the antenna, which indicates that antenna breakage was a significant contributor to PTT failure. Finally, only nine of the 142 (6%) PTTs—three of which were still attached to bears—had a final voltage reading close to the value indicating battery exhaustion. This suggests that battery exhaustion was not a major factor in tag performance.


The average functional longevity of approximately 2 months for ear-mounted PTTs (this study) is poor compared to PTT collars fitted to adult female polar bears, which can last for several years. Early failure of the ear-mounted PTTs appeared to be caused primarily by detachment from the ear or antenna breakage. We suggest that much smaller and lighter ear-mounted transmitters are necessary to reduce the risk of tissue irritation, tissue damage, and tag detachment, and with a more robust antenna design. Our results are applicable to other tag types (e.g., iridium and VHF systems) and to research on other large mammals that cannot wear radio collars.

Habitat degradation affects the summer activity of polar bears

Released May 16, 2017 00:00 EST

2017, Oecologia (184) 87-99

Jasmine V. Ware, Karyn D. Rode, Jeffrey F. Bromaghin, David C. Douglas, Ryan R. Wilson, Eric V. Regehr, Steven C. Amstrup, George M. Durner, Anthony M. Pagano, Jay Olson, Charles T. Robbins, Heiko T Jansen

Understanding behavioral responses of species to environmental change is critical to forecasting population-level effects. Although climate change is significantly impacting species’ distributions, few studies have examined associated changes in behavior. Polar bear (Ursus maritimus) subpopulations have varied in their near-term responses to sea ice decline. We examined behavioral responses of two adjacent subpopulations to changes in habitat availability during the annual sea ice minimum using activity data. Location and activity sensor data collected from 1989 to 2014 for 202 adult female polar bears in the Southern Beaufort Sea (SB) and Chukchi Sea (CS) subpopulations were used to compare activity in three habitat types varying in prey availability: (1) land; (2) ice over shallow, biologically productive waters; and (3) ice over deeper, less productive waters. Bears varied activity across and within habitats with the highest activity at 50–75% sea ice concentration over shallow waters. On land, SB bears exhibited variable but relatively high activity associated with the use of subsistence-harvested bowhead whale carcasses, whereas CS bears exhibited low activity consistent with minimal feeding. Both subpopulations had fewer observations in their preferred shallow-water sea ice habitats in recent years, corresponding with declines in availability of this substrate. The substantially higher use of marginal habitats by SB bears is an additional mechanism potentially explaining why this subpopulation has experienced negative effects of sea ice loss compared to the still-productive CS subpopulation. Variability in activity among, and within, habitats suggests that bears alter their behavior in response to habitat conditions, presumably in an attempt to balance prey availability with energy costs.

Predicting wading bird and aquatic faunal responses to ecosystem restoration scenarios

Released May 16, 2017 00:00 EST

2017, Restoration Ecology

James Beerens, Joel C. Trexler, Christopher P. Catano

In large-scale conservation decisions, scenario planning identifies key uncertainties of ecosystem function linked to ecological drivers affected by management, incorporates ecological feedbacks, and scales up to answer questions robust to alternative futures. Wetland restoration planning requires an understanding of how proposed changes in surface hydrology, water storage, and landscape connectivity affect aquatic animal composition, productivity, and food-web function. In the Florida Everglades, reintroduction of historical hydrologic patterns is expected to increase productivity of all trophic levels. Highly mobile indicator species such as wading birds integrate secondary productivity from aquatic prey (small fishes and crayfish) over the landscape. To evaluate how fish, crayfish, and wading birds may respond to alternative hydrologic restoration plans, we compared predicted small fish density, crayfish density and biomass, and wading bird occurrence for existing conditions to four restoration scenarios that varied water storage and removal of levees and canals (i.e. decompartmentalization). Densities of small fish and occurrence of wading birds are predicted to increase throughout most of the Everglades under all restoration options because of increased flows and connectivity. Full decompartmentalization goes furthest toward recreating hypothesized historical patterns of fish density by draining excess water ponded by levees and hydrating areas that are currently drier than in the past. In contrast, crayfish density declined and species composition shifted under all restoration options because of lengthened hydroperiods (i.e. time of inundation). Under full decompartmentalization, the distribution of increased prey available for wading birds shifted south, closer to historical locations of nesting activity in Everglades National Park.

Hydrogeologic characteristics and geospatial analysis of water-table changes in the alluvium of the lower Arkansas River Valley, southeastern Colorado, 2002, 2008, and 2015

Released May 15, 2017 16:30 EST

2017, Scientific Investigations Map 3378

Michael J. Holmberg

The U.S. Geological Survey in cooperation with the Lower Arkansas Valley Water Conservancy District measures groundwater levels periodically in about 100 wells completed in the alluvial material of the Arkansas River Valley in Pueblo, Crowley, Otero, Bent, and Prowers Counties in southeastern Colorado, of which 95 are used for the analysis in this report. The purpose of this report is to provide information to water-resource administrators, managers, planners, and users about groundwater characteristics in the alluvium of the lower Arkansas Valley extending roughly 150 miles between Pueblo Reservoir and the Colorado-Kansas State line. This report includes three map sheets showing (1) bedrock altitude at the base of the alluvium of the lower Arkansas Valley; (2) estimated spring-to-spring and fall-to-fall changes in water-table altitude between 2002, 2008, and 2015; and (3) estimated saturated thickness in the alluvium during spring and fall of 2002, 2008, and 2015, and thickness of the alluvium in the lower Arkansas Valley. Water-level changes were analyzed by geospatial interpolation methods.

Available data included all water-level measurements made between January 1, 2001, and December 31, 2015; however, only data from fall and spring of 2002, 2008, and 2015 are mapped in this report. To account for the effect of John Martin Reservoir in Bent County, Colorado, lake levels at the reservoir were assigned to points along the approximate shoreline and were included in the water-level dataset. After combining the water-level measurements and lake levels, inverse distance weighting was used to interpolate between points and calculate the altitude of the water table for fall and spring of each year for comparisons. Saturated thickness was calculated by subtracting the bedrock surface from the water-table surface. Thickness of the alluvium was calculated by subtracting the bedrock surface from land surface using a digital elevation model.

In order to analyze the response of the alluvium to varying environmental and anthropogenic conditions, the percentage of area of the lower Arkansas Valley showing an absolute change of 3 feet or less was calculated for each of the six water-table altitude change maps. For fall water-table altitude change maps, the periods between 2002 and 2008, 2008 and 2015, and 2002 and 2015 showed that 86.5 percent, 85.2 percent, and 66.3 percent of the study area, respectively, showed a net change of 3 feet or less. In the spring water-table altitude change maps these periods showed a net change of 3 feet or less in 94.4 percent, 96.1 percent, and 90.2 percent of the study area, respectively. While the estimated change in water-table altitude was slightly greater and more variable in fall-to-fall comparisons, these high percentages of area with relatively small net changes indicated that, at least in comparisons of the years presented, there was not a large amount of fluctuation in the altitude of the water table.

The saturated thickness in the lower Arkansas Valley was between 25 and 50 feet in 34.4 to 35.9 percent of the study area, depending on the season and year. Between 30.2 and 35.6 percent of the area showed saturated thicknesses between 0 and 25 feet. Less than 1 percent of the area showed a saturated thickness greater than 200 feet in all mapped seasons and years.

Assessment of undiscovered oil and gas resources in the Spraberry Formation of the Midland Basin, Permian Basin Province, Texas, 2017

Released May 15, 2017 12:45 EST

2017, Fact Sheet 2017-3029

Kristen R. Marra, Stephanie B. Gaswirth, Christopher J. Schenk, Heidi M. Leathers-Miller, Timothy R. Klett, Tracey J. Mercier, Phuong A. Le, Marilyn E. Tennyson, Thomas M. Finn, Sarah J. Hawkins, Michael E. Brownfield

Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean resources of 4.2 billion barrels of oil and 3.1 trillion cubic feet of gas in the Spraberry Formation of the Midland Basin, Permian Basin Province, Texas.

U.S. Geological Survey Karst Interest Group Proceedings, San Antonio, Texas, May 16–18, 2017

Released May 15, 2017 09:15 EST

2017, Scientific Investigations Report 2017-5023

Eve L. Kuniansky, Lawrence E. Spangler, editor(s)

Introduction and Acknowledgments

Karst aquifer systems are present throughout parts of the United States and some of its territories, and have developed in carbonate rocks (primarily limestone and dolomite) and evaporites (gypsum, anhydrite, and halite) that span an interval of time encompassing more than 550 million years. The depositional environments, diagenetic processes, post-depositional tectonic events, and geochemical weathering processes that form karst aquifers are varied and complex. These factors involve biological, chemical, and physical changes that when combined with the diverse climatic regimes in which karst development has taken place, result in the unique dual- or triple-porosity nature of karst aquifers. These complex hydrogeologic systems typically represent challenging and unique conditions to scientists attempting to study groundwater flow and contaminant transport in these terrains.

The dissolution of carbonate rocks and the subsequent development of distinct and beautiful landscapes, caverns, and springs have resulted in the most exceptional karst areas being designated as national or state parks. Tens of thousands of similar areas in the United States have been developed into commercial caverns and known privately owned caves. Both public and private properties provide access for scientists to study the flow of groundwater in situ. Likewise, the range and complexity of landforms and groundwater flow systems associated with karst terrains are enormous, perhaps more than for any other aquifer type. Karst aquifers and landscapes that form in tropical areas, such as the cockpit karst along the north coast of Puerto Rico, differ greatly from karst landforms in more arid climates, such as the Edwards Plateau in west-central Texas or the Guadalupe Mountains near Carlsbad, New Mexico, where hypogenic processes have played a major role in speleogenesis. Many of these public and private lands also contain unique flora and fauna associated with these karst hydrogeologic systems. As a result, numerous federal, state, and local agencies have a strong interest in the study of karst terrains.

Many of the major springs and aquifers in the United States have developed in carbonate rocks, such as the Floridan aquifer system in Florida and parts of Alabama, Georgia, and South Carolina; the Ozark Plateaus aquifer system in parts of Arkansas, Kansas, Missouri, and Oklahoma; and the Edwards-Trinity aquifer system in west-central Texas. These aquifers, and the springs that discharge from them, serve as major water-supply sources and form unique ecological habitats. Competition for the water resources of karst aquifers is common, and urban development and the lack of attenuation of contaminants in karst areas due to dissolution features that form direct pathways into karst aquifers can impact the ecosystem and water quality associated with these aquifers.

The concept for developing a platform for interaction among scientists within the U.S. Geological Survey (USGS) working on karst-related studies evolved from the November 1999 National Groundwater Meeting of the USGS. As a result, the Karst Interest Group (KIG) was formed in 2000. The KIG is a loose-knit, grass-roots organization of USGS and non-USGS scientists and researchers devoted to fostering better communication among scientists working on, or interested in, karst science. The primary mission of the KIG is to encourage and support interdisciplinary collaboration and technology transfer among scientists working in karst areas. Additionally, the KIG encourages collaborative studies between the different mission areas of the USGS as well as with other federal and state agencies, and with researchers from academia and institutes.

To accomplish its mission, the KIG has organized a series of workshops that have been held near nationally important karst areas. To date (2017) seven KIG workshops, including the workshop documented in this report, have been held. The workshops typically include oral and poster sessions on selected karst-related topics and research, as well as field trips to local karst areas. To increase non-USGS participation an effort was made for the workshops to be held at a university or institute beginning with the fourth workshop. Proceedings of the workshops are published by the USGS and are available online at the USGS publications warehouse by using the search term “karst interest group.”

The first KIG workshop was held in St. Petersburg, Florida, in 2001, in the vicinity of the large springs and other karst features of the Floridan aquifer system. The second KIG workshop was held in 2002, in Shepherdstown, West Virginia, in proximity to the carbonate aquifers of the northern Shenandoah Valley, and highlighted an invited presentation on karst literature by the late Barry F. Beck of P.E. LaMoreaux and Associates. The third KIG workshop was held in 2005, in Rapid City, South Dakota, near evaporite karst features in limestones of the Madison Group in the Black Hills of South Dakota. The Rapid City KIG workshop included field trips to Wind Cave National Park and Jewel Cave National Monument, and featured a presentation by Thomas Casadevall, then USGS Central Region Director, on the status of Earth science at the USGS.

The fourth KIG workshop in 2008 was hosted by the Hoffman Environmental Research Institute and Center for Cave and Karst Studies at Western Kentucky University in Bowling Green, Kentucky, near Mammoth Cave National Park and karst features of the Chester Upland and Pennyroyal Plateau. The workshop featured a late-night field trip into Mammoth Cave led by Rickard Toomey and Rick Olsen, National Park Service. The fifth KIG workshop in 2011 was a joint meeting of the USGS KIG and University of Arkansas HydroDays, hosted by the Department of Geosciences at the University of Arkansas in Fayetteville. The workshop featured an outstanding field trip to the unique karst terrain along the Buffalo National River in the southern Ozarks, and a keynote presentation on paleokarst in the United States was delivered by Art and Peggy Palmer. The sixth KIG workshop was hosted by the National Cave and Karst Research Institute (NCKRI) in 2014, in Carlsbad, New Mexico. George Veni, Director of the NCKRI, served as a co-chair of the workshop with Eve Kuniansky of the USGS. The workshop featured speaker Dr. Penelope Boston, Director of Cave and Karst Studies at New Mexico Tech, Socorro, and Academic Director at the NCKRI, who addressed the future of karst research. The field trip on evaporite karst of the lower Pecos Valley was led by Lewis Land (NCKRI karst hydrologist), and the field trip on the geology of Carlsbad Caverns National Park was led by George Veni.

This current seventh KIG workshop is being held in San Antonio at the University of Texas at San Antonio (UTSA). This 2017 workshop is being hosted by the Department of Geological Sciences’ Student Geological Society (SGS), and student chapters of the American Association of Petroleum Geologists (AAPG) and Association of Engineering Geologists (AEG), with support by the UTSA Department of Geological Sciences and Center for Water Research. The UTSA student chapter presidents, Jose Silvestre (SGS), John Cooper (AAPG), and Tyler Mead (AEG) serve as co-chairs of the 2017 workshop with Eve Kuniansky of the USGS. The technical session committee is chaired by Eve Kuniansky, USGS, and includes Michael Bradley, Tom Byl, Rebecca Lambert, John Lane, and James Kaufmann, all USGS, and Patrick Tucci, retired USGS. The logistics committee includes Amy Clark, Yongli Gao, and Lance Lambert (Department Chair), UTSA Department of Geological Sciences; and Ryan Banta and Allan Clark, USGS, San Antonio, Texas. The field trip committee is chaired by Allan Clark and includes Amy Clark, Yongli Gao, and Keith Muehlestein, UTSA; Marcus Gary, Edwards Aquifer Authority and University of Texas at Austin; Ron Green, Southwest Research Institute; Geary Schindel, Edwards Aquifer Authority; and George Veni, NCKRI. Additionally, two organizations have assisted the UTSA student chapters in hosting the meeting by donating funds to the chapters: the Edwards Aquifer Authority, San Antonio, Texas, and the Barton Springs Edwards Aquifer Authority, Austin, Texas. Additionally, Yongli Gao, Center for Water Research and Department of Geological Sciences, UTSA, helped develop sessions on cave and karst research in China for this workshop. These proceedings could not have been accomplished without the assistance of Lawrence E. Spangler as co-editor who not only has subject matter expertise, but also serves as an editor with the USGS Science Publishing Network. We sincerely hope that this workshop continues to promote future collaboration among scientists of varied and diverse backgrounds, and improves our understanding of karst aquifer systems in the United States and its territories.

The extended abstracts of USGS authors were peer reviewed and approved for publication by the USGS. Articles submitted by university researchers and other federal and state agencies did not go through the formal USGS peer review and approval process, and therefore may not adhere to USGS editorial standards or stratigraphic nomenclature. However, all articles had a minimum of two peer reviews and were edited for consistency of appearance in the proceedings. The use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. The USGS Water Availability and Use Science Program funded the publication costs of the proceedings.

Using tri-axial accelerometers to identify wild polar bear behaviors

Released May 15, 2017 00:00 EST

2017, Endangered Species Research (32) 19-33

Anthony M. Pagano, Karyn D. Rode, A. Cutting, M.A. Owen, S. Jensen, J.V. Ware, C.T. Robbins, George M. Durner, Todd C. Atwood, M.E. Obbard, K.R. Middel, G.W. Thiemann, T.M. Williams

Tri-axial accelerometers have been used to remotely identify the behaviors of a wide range of taxa. Assigning behaviors to accelerometer data often involves the use of captive animals or surrogate species, as their accelerometer signatures are generally assumed to be similar to those of their wild counterparts. However, this has rarely been tested. Validated accelerometer data are needed for polar bears Ursus maritimus to understand how habitat conditions may influence behavior and energy demands. We used accelerometer and water conductivity data to remotely distinguish 10 polar bear behaviors. We calibrated accelerometer and conductivity data collected from collars with behaviors observed from video-recorded captive polar bears and brown bears U. arctos, and with video from camera collars deployed on free-ranging polar bears on sea ice and on land. We used random forest models to predict behaviors and found strong ability to discriminate the most common wild polar bear behaviors using a combination of accelerometer and conductivity sensor data from captive or wild polar bears. In contrast, models using data from captive brown bears failed to reliably distinguish most active behaviors in wild polar bears. Our ability to discriminate behavior was greatest when species- and habitat-specific data from wild individuals were used to train models. Data from captive individuals may be suitable for calibrating accelerometers, but may provide reduced ability to discriminate some behaviors. The accelerometer calibrations developed here provide a method to quantify polar bear behaviors to evaluate the impacts of declines in Arctic sea ice.

Comparative cophylogenetics of Australian phabine pigeons and doves (Aves: Columbidae) and their feather lice (Insecta: Phthiraptera)

Released May 15, 2017 00:00 EST

2017, International Journal for Parasitology (47) 347-356

Andrew D. Sweet, R. Terry Chesser, Kevin P. Johnson

Host–parasite coevolutionary histories can differ among multiple groups of parasites associated with the same group of hosts. For example, parasitic wing and body lice (Insecta: Phthiraptera) of New World pigeons and doves (Aves: Columbidae) differ in their cophylogenetic patterns, with body lice exhibiting higher phylogenetic congruence with their hosts than wing lice. In this study, we focus on the wing and body lice of Australian phabine pigeons and doves to determine whether the patterns in New World pigeons and doves are consistent with those of pigeons and doves from other regions. Using molecular sequence data for most phabine species and their lice, we estimated phylogenetic trees for all three groups (pigeons and doves, wing lice and body lice), and compared the phabine (host) tree with both parasite trees using multiple cophylogenetic methods. We found a pattern opposite to that found for New World pigeons and doves, with Australian wing lice showing congruence with their hosts, and body lice exhibiting a lack of congruence. There are no documented records of hippoboscid flies associated with Australian phabines, thus these lice may lack the opportunity to disperse among host species by attaching to hippoboscid flies (phoresis), which could explain these patterns. However, additional sampling for flies is needed to confirm this hypothesis. Large differences in body size among phabine pigeons and doves may also help to explain the congruence of the wing lice with their hosts. It may be more difficult for wing lice than body lice to switch among hosts that vary more dramatically in size. The results from this study highlight how host–parasite coevolutionary histories can vary by region, and how local factors can shape the relationship.

Sources, composition and spatial distribution of marine debris along the Mediterranean coast of Israel

Released May 15, 2017 00:00 EST

2017, Marine Pollution Bulletin (114) 1036-1045

Galia Pasternak, Dov Zviely, Christine Ribic, Asaf Ariel, Ehud Spanier

Marine debris (litter) is a complex problem that affects human activities and the marine environment worldwide. The Clean Coast Program in Israel has had some success in keeping most of the coasts clean most of the time, but without understanding the mechanisms of accumulation of marine debris on the coasts of Israel. In 2012, we initiated a study to characterize the types of marine debris, its origins and spatial distribution. Nineteen surveys were done from June 2012 to March 2015 on eight beaches that spanned the coast of Israel. Average debris density was 12.1 items per 100 m2 and 90% of the items were plastic. The top debris categories were food wrappers and disposables, plastic bags and cigarette butts. However, there was variation in the top debris categories among the beaches indicating that a flexible approach with multiple options will be important when addressing the marine debris problem.

Carbon cycling in the mantled karst of the Ozark Plateaus, central United States

Released May 15, 2017 00:00 EST

2017, Geoderma Regional (10) 64-76

Katherine Knierim, Erik D. Pollock, Matthew D. Covington, Phillip D. Hays, Kristofor R. Brye

The nature of carbon (C) cycling in the unsaturated zone where groundwater is in contact with abundant gas-filled voids is poorly understood. The objective of this study was to trace inorganic-C cycling in a karst landscape using stable-C isotopes, with emphasis on a shallow groundwater flow path through the soil, to an underlying cave, and to the spring outlet of a cave stream in the Ozark Plateaus of northwestern Arkansas. Carbon dioxide (CO2) concentration and isotopic composition (δ13C-CO2) in gas and dissolved inorganic carbon (DIC) concentration and isotopic composition (δ13C-DIC) in water were measured in samples collected from two suction-cup soil samplers above the cave, three sites in the cave, and at the spring outlet of the cave stream. Soil-gas CO2 concentration (median 2,578 ppm) and δ13C-CO2 (median − 21.5‰) were seasonally variable, reflecting the effects of surface temperature changes on soil-CO2 production via respiration and organic-matter decomposition. Cave-air CO2 (median 1,026 ppm) was sourced from the soil zone and the surface atmosphere, with seasonally changing proportions of each source controlled by surface temperature-driven air density gradients. Soil-DIC concentration (median 1.7 mg L− 1) was lower and soil-δ13C-DIC (median − 19.5‰) was lighter compared to the cave (median 23.3 mg L− 1 and − 14.3‰, respectively) because carbonate-bedrock dissolution provided an inorganic source of C to the cave. Carbon species in the soil had a unique, light stable-C isotopic signature compared to the cave. Discrimination of soil-C sources to karst groundwater was achieved, which is critical for developing hydrologic budgets using environmental tracers such as C.

Challenges for creating a site-specific groundwater-use record for the Ozark Plateaus aquifer system (central USA) from 1900 to 2010

Released May 15, 2017 00:00 EST

2017, Hydrogeology Journal

Katherine Knierim, Anna M. Nottmeier, Scott C. Worland, Drew A. Westerman, Brian R. Clark

Hydrologic budgets to determine groundwater availability are important tools for water-resource managers. One challenging component for developing hydrologic budgets is quantifying water use through time because historical and site-specific water-use data can be sparse or poorly documented. This research developed a groundwater-use record for the Ozark Plateaus aquifer system (central USA) from 1900 to 2010 that related county-level aggregated water-use data to site-specific well locations and aquifer units. A simple population-based linear model, constrained to 0 million liters per day in 1900, provided the best means to extrapolate groundwater-withdrawal rates pre-1950s when there was a paucity of water-use data. To disaggregate county-level data to individual wells across a regional aquifer system, a programmatic hierarchical process was developed, based on the level of confidence that a well pumped groundwater for a specific use during a specific year. Statistical models tested on a subset of the best-available site-specific water-use data provided a mechanism to bracket historic groundwater use, such that groundwater-withdrawal rates ranged, on average, plus or minus 38% from modeled values. Groundwater withdrawn for public supply and domestic use accounted for between 48 and 74% of total groundwater use since 1901, highlighting that groundwater provides an important drinking-water resource. The compilation, analysis, and spatial and temporal extrapolation of water-use data remain a challenging task for water scientists, but is of paramount importance to better quantify groundwater use and availability.

Using decision analysis to support proactive management of emerging infectious wildlife diseases

Released May 15, 2017 00:00 EST

2017, Frontiers in Ecology and the Environment (15) 214-221

Evan H. Campbell Grant, Erin L. Muths, Rachel A. Katz, Stefano Canessa, Michael J. Adams, Jennifer R. Ballard, Lee Berger, Cheryl J. Briggs, Jeremy Coleman, Matthew J. Gray, M. Camille Harris, Reid N. Harris, Blake R. Hossack, Kathryn P. Huyvaert, Jonathan E. Kolby, Karen R. Lips, Robert E. Lovich, Hamish I. McCallum, Joseph R. Mendelson III, Priya Nanjappa, Deanna H. Olson, Jenny G. Powers, Katherine L.D. Richgels, Robin E. Russell, Benedikt R. Schmidt, Annemarieke Spitzen-van der Sluijs, Mary Kay Watry, Douglas C. Woodhams, C. LeAnn White

Despite calls for improved responses to emerging infectious diseases in wildlife, management is seldom considered until a disease has been detected in affected populations. Reactive approaches may limit the potential for control and increase total response costs. An alternative, proactive management framework can identify immediate actions that reduce future impacts even before a disease is detected, and plan subsequent actions that are conditional on disease emergence. We identify four main obstacles to developing proactive management strategies for the newly discovered salamander pathogen Batrachochytrium salamandrivorans (Bsal). Given that uncertainty is a hallmark of wildlife disease management and that associated decisions are often complicated by multiple competing objectives, we advocate using decision analysis to create and evaluate trade-offs between proactive (pre-emergence) and reactive (post-emergence) management options. Policy makers and natural resource agency personnel can apply principles from decision analysis to improve strategies for countering emerging infectious diseases.

Effects on circulating steroid hormones and gene expression along the hypothalamus–pituitary–gonadal axis in adult Japanese quail exposed to 17β-trenbolone across multiple generations

Released May 15, 2017 00:00 EST

2017, Toxicological Sciences (157) 62-73

Natalie Karouna, Yu Chen, Paula F. Henry, Catherine M. Maddox, Dan Sprague

We investigated the effects of the androgenic growth promoter 17β-trenbolone (17βTB) on adult Japanese quail (Coturnix japonica) exposed across three generations. The F0 generation was exposed after sexual maturity to 0, 1, 5, 10, 20, and 40 ppm through feed. The F1 generation was exposed in ovo by maternal transfer and through feed at the same doses as their parents. The F2 generation was exposed in ovo only. Levels of plasma sex steroids, gonadal Cytochrome P450 aromatase (CYP19A1) mRNA and select brain neuroendocrine peptide mRNAs were measured. In males, testosterone levels did not differ in any generation from those in controls. Estradiol was significantly elevated in 17βTB treated F0 and F1 males. In F0 and F1 females, testosterone was suppressed by 17βTB, whereas estradiol was significantly higher at 40 ppm in F0 and at 10 ppm in F1 females. CYP19A1 expression in F1 males and females increased suggesting a compensatory response to the androgenic effects of 17βTB. Few significant effects were observed in the F2 birds indicating that in ovo exposure had limited effects on the monitored endpoints. Overall, our results confirmed endocrine disrupting effects of dietary 17βTB in Japanese quail but the response was dependent on sex, developmental stage at initiation of exposure, and dose.

Coastal bathymetry data collected in May 2015 from Fire Island, New York—Wilderness breach and shoreface

Released May 12, 2017 08:15 EST

2017, Data Series 1049

Timothy R. Nelson, Jennifer L. Miselis, Cheryl J. Hapke, Owen T. Brenner, Rachel E. Henderson, Billy J. Reynolds, Kathleen E. Wilson

Scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center in St. Petersburg, Florida, conducted a bathymetric survey of Fire Island from May 6-20, 2015. The USGS is involved in a post-Hurricane Sandy effort to map and monitor the morphologic evolution of the wilderness breach as a part of the Hurricane Sandy Supplemental Project GS2-2B. During this study, bathymetry data were collected with single-beam echo sounders and Global Positioning Systems, which were mounted to personal watercraft, along the Fire Island shoreface and within the wilderness breach. Additional bathymetry and elevation data were collected using backpack Global Positioning Systems on flood shoals and in shallow channels within the wilderness breach.

Bedrock and structural geologic maps of eastern Candor Sulci, western Ceti Mensa, and southeastern Ceti Mensa, Candor Chasma, Valles Marineris region of Mars

Released May 12, 2017 08:00 EST

2017, Scientific Investigations Map 3359

Chris H. Okubo, Tenielle A. Gaither

This map product contains a set of three 1:18,000-scale maps showing the geology and structure of study areas in the western Candor Chasma region of Valles Marineris, Mars. These maps are part of an informal series of large-scale maps and map-based topical studies aimed at refining current understanding of the geologic history of western Candor Chasma. The map bases consist of digital elevation models and orthorectified images derived from High Resolution Imaging Science Experiment (HiRISE) data. These maps are accompanied by geologic cross sections, colorized elevation maps, and cutouts of HiRISE images showing key superposition relations. Also included in this product is a Correlation of Map Units that integrates units across all three map areas, as well as an integrated Description of Map Units and an integrated Explanation of Map Symbols. The maps were assembled using ArcGIS software produced by Environmental Systems Research Institute ( The ArcGIS projects and databases associated with each map are included online as supplemental data.

Estimating thermal performance curves from repeated field observations

Released May 12, 2017 00:00 EST

2017, Ecology (98) 1377-1387

Evan Childress, Benjamin H. Letcher

Estimating thermal performance of organisms is critical for understanding population distributions and dynamics and predicting responses to climate change. Typically, performance curves are estimated using laboratory studies to isolate temperature effects, but other abiotic and biotic factors influence temperature-performance relationships in nature reducing these models' predictive ability. We present a model for estimating thermal performance curves from repeated field observations that includes environmental and individual variation. We fit the model in a Bayesian framework using MCMC sampling, which allowed for estimation of unobserved latent growth while propagating uncertainty. Fitting the model to simulated data varying in sampling design and parameter values demonstrated that the parameter estimates were accurate, precise, and unbiased. Fitting the model to individual growth data from wild trout revealed high out-of-sample predictive ability relative to laboratory-derived models, which produced more biased predictions for field performance. The field-based estimates of thermal maxima were lower than those based on laboratory studies. Under warming temperature scenarios, field-derived performance models predicted stronger declines in body size than laboratory-derived models, suggesting that laboratory-based models may underestimate climate change effects. The presented model estimates true, realized field performance, avoiding assumptions required for applying laboratory-based models to field performance, which should improve estimates of performance under climate change and advance thermal ecology.

Book Review: Biology and management of invasive Quagga and Zebra mussels in the western United States

Released May 12, 2017 00:00 EST

2017, Quarterly Review of Biology (92) 209-210

Amy J. Benson

Water is a precious and limited commodity in the western United States and its conveyance is extremely important. Therefore, it is critical to do as much as possible to prevent the spread of two species of dreissenid mussels, both non-native and highly invasive aquatic species already well-established in the eastern half of the United States. This book addresses the occurrences of the two dreissenid mussels in the West, the quagga mussel and the zebra mussel, that are both known to negatively impact water delivery systems and natural ecosystems. It is edited by two researchers whom have extensive experience working with the mussels in the West and is composed of 34 chapters, or articles, written by a variety of experts.

Book information: Biology and Management of Invasive Quagga and Zebra Mussels in the Western United States. Edited by Wai Hing Wong and Shawn L. Gerstenberger. Boca Raton (Florida): CRC Press (Taylor & Francis Group). $149.95. xx + 545 p.; ill.; index. ISBN: 978-1-4665-9561-3. [Compact Disc included.] 2015.

Informing recovery in a human-transformed landscape: Drought-mediated coexistence alters population trends of an imperiled salamander and invasive predators

Released May 12, 2017 00:00 EST

2017, Biological Conservation (209) 377-394

Blake R. Hossack, Richard Honeycutt, Brent H. Sigafus, Erin L. Muths, Catherine L. Crawford, Thomas R. Jones, Jeff A. Sorensen, James C. Rorabaugh, Thierry Chambert

Understanding the additive or interactive threats of habitat transformation and invasive species is critical for conservation, especially where climate change is expected to increase the severity or frequency of drought. In the arid southwestern USA, this combination of stressors has caused widespread declines of native aquatic and semi-aquatic species. Achieving resilience to drought and other effects of climate change may depend upon continued management, so understanding the combined effects of stressors is important. We used Bayesian hierarchical models fitted with 10-years of pond-based monitoring surveys for the federally-endangered Sonoran Tiger Salamander (Ambystoma mavortium stebbinsi) and invasive predators (fishes and American Bullfrogs, Lithobates catesbeianus) that threaten native species. We estimated trends in occupancy of salamanders and invasive predators while accounting for hydrological dynamics of ponds, then used a two-species interaction model to directly estimate how invasive predators affected salamander occupancy. We also tested a conceptual model that predicted that drought, by limiting the distribution of invasive predators, could ultimately benefit native species. Even though occupancy of invasive predators was stationary and their presence in a pond reduced the probability of salamander presence by 23%, occupancy of Sonoran Tiger Salamanders increased, annually, by 2.2%. Occupancy of salamanders and invasive predators both declined dramatically following the 5th consecutive year of drought. Salamander occupancy recovered quickly after return to non-drought conditions, while occupancy of invasive predators remained suppressed. Models that incorporated three time-lagged periods (1 to 4 years) of local moisture conditions confirmed that salamanders and invasive predators responded differently to drought, reflecting how life-history strategies shape responses to disturbances. The positive 10-year trend in salamander occupancy and their rapid recovery after drought provided partial support for the hypothesis of drought-mediated coexistence with invasive predators. These results also suggest management opportunities for conservation of the Sonoran Tiger Salamander and other imperiled organisms in human-transformed landscapes.

Noble gas signatures in the Island of Maui, Hawaii: Characterizing groundwater sources in fractured systems

Released May 12, 2017 00:00 EST

2017, Water Resources Research

Yi Niu, M. Clara Castro, Chris M. Hall, Stephen B. Gingerich, Martha A. Scholl, Rohit B. Warrier

Uneven distribution of rainfall and freshwater scarcity in populated areas in the Island of Maui, Hawaii, renders water resources management a challenge in this complex and ill-defined hydrological system. A previous study in the Galapagos Islands suggests that noble gas temperatures (NGTs) record seasonality in that fractured, rapid infiltration groundwater system rather than the commonly observed mean annual air temperature (MAAT) in sedimentary systems where infiltration is slower thus, providing information on recharge sources and potential flow paths. Here we report noble gas results from the basal aquifer, springs, and rainwater in Maui to explore the potential for noble gases in characterizing this type of complex fractured hydrologic systems. Most samples display a mass-dependent depletion pattern with respect to surface conditions consistent with previous observations both in the Galapagos Islands and Michigan rainwater. Basal aquifer and rainwater noble gas patterns are similar and suggest direct, fast recharge from precipitation to the basal aquifer. In contrast, multiple springs, representative of perched aquifers, display highly variable noble gas concentrations suggesting recharge from a variety of sources. The distinct noble gas patterns for the basal aquifer and springs suggest that basal and perched aquifers are separate entities. Maui rainwater displays high apparent NGTs, incompatible with surface conditions, pointing either to an origin at high altitudes with the presence of ice or an ice-like source of undetermined origin. Overall, noble gas signatures in Maui reflect the source of recharge rather than the expected altitude/temperature relationship commonly observed in sedimentary systems.

Atmospheric deposition to forests in the eastern USA

Released May 12, 2017 00:00 EST

2017, Environmental Pollution (228) 8-18

Martin R. Risch, John F. DeWild, David A. Gay, Leiming Zhang, Elizabeth W. Boyer, David P. Krabbenhoft

Atmospheric mercury (Hg) deposition to forests is important because half of the land cover in the eastern USA is forest. Mercury was measured in autumn litterfall and weekly precipitation samples at a total of 27 National Atmospheric Deposition Program (NADP) monitoring sites in deciduous and mixed deciduous-coniferous forests in 16 states in the eastern USA during 2007–2014. These simultaneous, uniform, repeated, annual measurements of forest Hg include the broadest area and longest time frame to date. The autumn litterfall-Hg concentrations and litterfall mass at the study sites each year were combined with annual precipitation-Hg data. Rates of litterfall-Hg deposition were higher than or equal to precipitation-Hg deposition rates in 70% of the annual data, which indicates a substantial contribution from litterfall to total atmospheric-Hg deposition. Annual litterfall-Hg deposition in this study had a median of 11.7 μg per square meter per year (μg/m2/yr) and ranged from 2.2 to 23.4 μg/m2/yr. It closely matched modeled dry-Hg deposition, based on land cover at selected NADP Hg-monitoring sites. Mean annual atmospheric-Hg deposition at forest study sites exhibited a spatial pattern partly explained by statistical differences among five forest-cover types and related to the mapped density of Hg emissions. Forest canopies apparently recorded changes in atmospheric-Hg concentrations over time because litterfall-Hg concentrations decreased year to year and litterfall-Hg concentrations were significantly higher in 2007–2009 than in 2012–2014. These findings reinforce reported decreases in Hg emissions and atmospheric elemental-Hg concentrations during this same time period. Methylmercury (MeHg) was detected in all litterfall samples at all sites, compared with MeHg detections in less than half the precipitation samples at selected sites during the study. These results indicate MeHg in litterfall is a pathway into the terrestrial food web where it can accumulate in the prey of songbirds, bats, and raptors.

Similarity of plant functional traits and aggregation pattern in a subtropical forest

Released May 12, 2017 00:00 EST

2017, Ecology and Evolution

Bo Zhang, Xiaozhen Lu, Jiang Jiang, Don DeAngelis, Zhiyuan Fu, Jinchi Zhang

The distribution of species and communities in relation to environmental heterogeneity is a central focus in ecology. Co-occurrence of species with similar functional traits is an indication that communities are determined in part by environmental filters. However, few studies have been designed to test how functional traits are selectively filtered by environmental conditions at local scales. Exploring the relationship between soil characteristics and plant traits is a step toward understanding the filtering hypothesis in determining plant distribution at local scale. Toward this end, we mapped all individual trees (diameter >1 cm) in a one-ha subtropical forest of China in 2007 and 2015. We measured topographic and detailed soil properties within the field site, as well as plant leaf functional traits and demographic rates of the seven most common tree species. A second one-ha study plot was established in 2015, to test and validate the general patterns that were drawn from first plot. We found that variation in species distribution at local scale can be explained by soil heterogeneity and plant functional traits. (From first plot). (1) Species dominant in habitats with high soil ammonium nitrogen and total phosphorus tended to have high specific leaf area (SLA) and relative growth rate (RGR). (2) Species dominant in low-fertility habitats tended to have high leaf dry matter content (LDMC), ratio of chlorophyll a and b (ratioab), and leaf thickness (LT). The hypothesis that functional traits are selected in part by environmental filters and determine plant distribution at local scale was confirmed by the data of the first plot and a second regional site showed similar species distribution patterns.

Geologic controls on cave development in Burnsville Cove, Bath and Highland Counties, Virginia

Released May 12, 2017 00:00 EST

2017, GSA Field Guides (47) 89-123

Christopher Swezey, John T. Haynes, Philip C Lucas, Richard A. Lambert

Burnsville Cove in Bath and Highland Counties (Virginia, USA) is a karst region in the Valley and Ridge Province of the Appalachian Mountains. The region contains many caves in Silurian to Devonian limestone, and is well suited for examining geologic controls on cave location and cave passage morphology. In Burnsville Cove, many caves are located preferentially near the axes of synclines and anticlines. For example, Butler Cave is an elongate cave where the trunk channel follows the axis of Sinking Creek syncline and most of the side passages follow joints at right angles to the syncline axis. In contrast, the Water Sinks Subway Cave, Owl Cave, and Helictite Cave have abundant maze patterns, and are located near the axis of Chestnut Ridge anticline. The maze patterns may be related to fact that the anticline axis is the site of the greatest amount of flexure, leading to more joints and (or) greater enlargement of joints. Many of the larger caves of Burnsville Cove (e.g., Breathing Cave, Butler Cave–Sinking Creek Cave System, lower parts of the Water Sinks Cave System) are developed in the Silurian Tonoloway Limestone, the stratigraphic unit with the greatest surface exposure in the area. Other caves are developed in the Silurian to Devonian Keyser Limestone of the Helderberg Group (e.g., Owl Cave, upper parts of the Water Sinks Cave System) and in the Devonian Shriver Chert and (or) Licking Creek Limestone of the Helderberg Group (e.g., Helictite Cave). Within the Tonoloway Limestone, the larger caves are developed in the lower member of the Tonoloway Limestone immediately below a bed of silica-cemented sandstone. In contrast, the larger caves in the Keyser Limestone are located preferentially in limestone beds containing stromatoporoid reefs, and some of the larger caves in the Licking Creek Limestone are located in beds of cherty limestone below the Devonian Oriskany Sandstone. Geologic controls on cave passage morphology include joints, bedding planes, and folds. The influence of joints results in tall and narrow cave passages, whereas the influence of bedding planes results in cave passages with flat ceilings and (or) floors. The influence of folds is less common, but a few cave passages follow fold axes and have distinctive arched ceilings.

Biotelemetery data for golden eagles (Aquila chrysaetos) captured in coastal southern California, February 2016–February 2017

Released May 12, 2017 00:00 EST

2017, Data Series 1051

Jeff A. Tracey, Melanie C. Madden, Jeremy B. Sebes, Peter H. Bloom, Todd E. Katzner, Robert N. Fisher

Because of a lack of clarity about the status of golden eagles (Aquila chrysaetos) in coastal southern California, the USGS, in collaboration with local, State, and other Federal agencies, began a multi-year survey and tracking program of golden eagles to address questions regarding habitat use, movement behavior, nest occupancy, genetic population structure, and human impacts on eagles. Golden eagle trapping and tracking efforts began in September 2014. During trapping efforts from September 29, 2014, to February 23, 2016, 27 golden eagles were captured. During trapping efforts from February 24, 2016, to February 23, 2017, an additional 10 golden eagles (7 females and 3 males) were captured in San Diego, Orange, and western Riverside Counties. Biotelemetry data for 26 of the 37 golden eagles that were transmitting data from February 24, 2016, to February 23, 2017 are presented. These eagles ranged as far north as northern Nevada and southern Wyoming, and as far south as La Paz, Baja California, Mexico.

Use of erroneous wolf generation time in assessments of domestic dog and human evolution

Released May 12, 2017 00:00 EST

2017, Science

L. David Mech, Shannon Barber-meyer

Scientific interest in dog domestication and parallel evolution of dogs and humans (Wang et al. 2013) has increased recently (Freedman et al. 2014, Larson and Bradley 2014, Franz et al. 2016,), and various important conclusions have been drawn based on how long ago the calculations show dogs were domesticated from ancestral wolves (Canis lupus). Calculation of this duration is based on “the most commonly assumed mutation rate of 1 x 10-8 per generation and a 3-year gray wolf generation time . . .” (Skoglund et al. 2015:3). It is unclear on what information the assumed generation time is based, but Ersmark et al. (2016) seemed to have based their assumption on a single wolf (Mech and Seal 1987). The importance of assuring that such assumptions are valid is obvious. Recently, two independent studies employing three large data sets and three methods from two widely separated areas have found that wolf generation time is 4.2-4.7 years. The first study, based on 200 wolves in Yellowstone National Park used age-specific birth and death rates to calculate a generation time of 4.16 years (vonHoldt et al. 2008). The second, using estimated first-breeding times of 86 female wolves in northeastern Minnesota found a generation time of 4.3 years and using uterine examination of 159 female wolves from throughout Minnesota yielded a generation time of 4.7 years (Mech et al. 2016). We suggest that previous studies using a 3-year generation time recalculate their figures and adjust their conclusions based on these generation times and publish revised results.

Solving groundwater flow problems by conjugate-gradient methods and the strongly implicit procedure

Released May 12, 2017 00:00 EST

1990, Water Resources Research (26) 1961-1969

Mary C. Hill

The performance of the preconditioned conjugate-gradient method with three preconditioners is compared with the strongly implicit procedure (SIP) using a scalar computer. The preconditioners considered are the incomplete Cholesky (ICCG) and the modified incomplete Cholesky (MICCG), which require the same computer storage as SIP as programmed for a problem with a symmetric matrix, and a polynomial preconditioner (POLCG), which requires less computer storage than SIP. Although POLCG is usually used on vector computers, it is included here because of its small storage requirements. In this paper, published comparisons of the solvers are evaluated, all four solvers are compared for the first time, and new test cases are presented to provide a more complete basis by which the solvers can be judged for typical groundwater flow problems. Based on nine test cases, the following conclusions are reached: (1) SIP is actually as efficient as ICCG for some of the published, linear, two-dimensional test cases that were reportedly solved much more efficiently by ICCG; (2) SIP is more efficient than other published comparisons would indicate when common convergence criteria are used; and (3) for problems that are three-dimensional, nonlinear, or both, and for which common convergence criteria are used, SIP is often more efficient than ICCG, and is sometimes more efficient than MICCG.

Evaluation of radon occurrence in groundwater from 16 geologic units in Pennsylvania, 1986–2015, with application to potential radon exposure from groundwater and indoor air

Released May 11, 2017 08:45 EST

2017, Scientific Investigations Report 2017-5018

Eliza L. Gross

Results from 1,041 groundwater samples collected during 1986‒2015 from 16 geologic units in Pennsylvania, associated with 25 or more groundwater samples with concentrations of radon-222, were evaluated in an effort to identify variations in radon-222 activities or concentrations and to classify potential radon-222 exposure from groundwater and indoor air. Radon-222 is hereafter referred to as “radon.” Radon concentrations in groundwater greater than or equal to the proposed U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) for public-water supply systems of 300 picocuries per liter (pCi/L) were present in about 87 percent of the water samples, whereas concentrations greater than or equal to the proposed alternative MCL (AMCL) for public water-supply systems of 4,000 pCi/L were present in 14 percent. The highest radon concentrations were measured in groundwater from the schists, gneisses, and quartzites of the Piedmont Physiographic Province.

In this study, conducted by the U.S. Geological Survey in cooperation with the Pennsylvania Department of Health and the Pennsylvania Department of Environmental Protection, groundwater samples were aggregated among 16 geologic units in Pennsylvania to identify units with high median radon concentrations in groundwater. Graphical plots and statistical tests were used to determine variations in radon concentrations in groundwater and indoor air. Median radon concentrations in groundwater samples and median radon concentrations in indoor air samples within the 16 geologic units were classified according to proposed and recommended regulatory limits to explore potential radon exposure from groundwater and indoor air. All of the geologic units, except for the Allegheny (Pa) and Glenshaw (Pcg) Formations in the Appalachian Plateaus Physiographic Province, had median radon concentrations greater than the proposed EPA MCL of 300 pCi/L, and the Peters Creek Schist (Xpc), which is in the Piedmont Physiographic Province, had a median radon concentration greater than the EPA proposed AMCL of 4,000 pCi/L. Median concentrations of radon in groundwater and indoor air were determined to differ significantly among the geologic units (Kruskal-Wallis test, significance probability, p<0.001), and Tukey’s test indicated that radon concentrations in groundwater and indoor air in the Peters Creek Schist (Xpc) were significantly higher than those in the other units. Also, the Peters Creek Schist (Xpc) was determined to be the area with highest potential of radon exposure from groundwater and indoor air and one of two units with the highest percentage of population assumed to be using domestic self-supplied water (81 percent), which puts the population at greater potential of exposure to radon from groundwater.

Potential radon exposure determined from classification of geologic units by median radon concentrations in groundwater and indoor air according to proposed and recommended regulatory limits is useful for drawing general conclusions about the presence, variation, and potential radon exposure in specific geologic units, but the associated data and maps have limitations. The aggregated indoor air radon data have spatial accuracy limitations owing to imprecision of geocoded test locations. In addition, the associated data describing geologic units and the public water supplier’s service areas have spatial and interpretation accuracy limitations. As a result, data and maps associated with this report are not recommended for use in predicting individual concentrations at specific sites nor for use as a decision-making tool for property owners to decide whether to test for radon concentrations at specific locations. Instead, the data and maps are meant to promote awareness regarding potential radon exposure in Pennsylvania and to point out data gaps that exist throughout the State.

Causal mechanisms of soil organic matter decomposition: deconstructing salinity and flooding impacts in coastal wetlands

Released May 11, 2017 00:00 EST

2017, Ecology

Camille L. Stagg, Donald Schoolmaster, Ken W. Krauss, Nicole Cormier, William H. Conner

Coastal wetlands significantly contribute to global carbon storage potential. Sea-level rise and other climate change-induced disturbances threaten coastal wetland sustainability and carbon storage capacity. It is critical that we understand the mechanisms controlling wetland carbon loss so that we can predict and manage these resources in anticipation of climate change. However, our current understanding of the mechanisms that control soil organic matter decomposition, in particular the impacts of elevated salinity, are limited, and literature reports are contradictory. In an attempt to improve our understanding of these complex processes, we measured root and rhizome decomposition and developed a causal model to identify and quantify the mechanisms that influence soil organic matter decomposition in coastal wetlands that are impacted by sea-level rise. We identified three causal pathways: 1) a direct pathway representing the effects of flooding on soil moisture, 2) a direct pathway representing the effects of salinity on decomposer microbial communities and soil biogeochemistry, and 3) an indirect pathway representing the effects of salinity on litter quality through changes in plant community composition over time. We used this model to test the effects of alternate scenarios on the response of tidal freshwater forested wetlands and oligohaline marshes to short- and long-term climate-induced disturbances of flooding and salinity. In tidal freshwater forested wetlands, the model predicted less decomposition in response to drought, hurricane salinity pulsing, and long-term sea-level rise. In contrast, in the oligohaline marsh, the model predicted no change in response to sea-level rise, and increased decomposition following a drought or a hurricane salinity pulse. Our results show that it is critical to consider the temporal scale of disturbance and the magnitude of exposure when assessing the effects of salinity intrusion on carbon mineralization in coastal wetlands. Here we identify three causal mechanisms that can reconcile disparities between long-term and short-term salinity impacts on organic matter decomposition.

Impact of tile drainage on evapotranspiration in South Dakota, USA, based on high spatiotemporal resolution evapotranspiration time series from a multi-satellite data fusion system

Released May 11, 2017 00:00 EST

2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing

Yun Yang, Martha C. Anderson, Feng Gao, Christopher Hain, William P. Kustas, Tilden P. Meyers, Wade Crow, Raymond G. Finocchiaro, Jason Otkin, Liang Sun, Yang Yang

Soil drainage is a widely used agricultural practice in the midwest USA to remove excess soil water to potentially improve the crop yield. Research shows an increasing trend in baseflow and streamflow in the midwest over the last 60 years, which may be related to artificial drainage. Subsurface drainage (i.e., tile) in particular may have strongly contributed to the increase in these flows, because of its extensive use and recent gain in the popularity as a yield-enhancement practice. However, how evapotranspiration (ET) is impacted by tile drainage on a regional level is not well-documented. To explore spatial and temporal ET patterns and their relationship to tile drainage, we applied an energy balance-based multisensor data fusion method to estimate daily 30-m ET over an intensively tile-drained area in South Dakota, USA, from 2005 to 2013. Results suggest that tile drainage slightly decreases the annual cumulative ET, particularly during the early growing season. However, higher mid-season crop water use suppresses the extent of the decrease of the annual cumulative ET that might be anticipated from widespread drainage. The regional water balance analysis during the growing season demonstrates good closure, with the average residual from 2005 to 2012 as low as -3 mm. As an independent check of the simulated ET at the regional scale, the water balance analysis lends additional confidence to the study. The results of this study improve our understanding of the influence of agricultural drainage practices on regional ET, and can affect future decision making regarding tile drainage systems.

Persistence of native and exotic plants 10 years after prairie reconstruction

Released May 11, 2017 00:00 EST

2017, Restoration Ecology

Diane L. Larson, J. B. Bright, Pauline Drobney, Jennifer L. Larson, Sara Vacek

Prairie reconstructions are a critical component of preservation of the imperiled tallgrass prairie ecosystem in the Midwestern United States. Sustainability of this endeavor depends on establishment of persistent cover of planted native species and resistance to noxious weeds. The goal of this study was to understand the influence of early reconstruction practices on long-term outcomes. Twelve replicates of three planting methods (dormant-season broadcast, growing-season broadcast, and growing-season drill) and three seed mix richness levels (10, 20, or 34 species), fully crossed in a completely randomized design were planted in 2005 on nine former agricultural fields located in Iowa and Minnesota. Cover by species was estimated in 2005–2007, 2010, and 2015. In 2015, cover of planted species, native nonplanted species, and exotic species were similar to those recorded in 2010. Cover of the noxious weed Cirsium arvense had also declined by an average of 49% without herbicide from a peak in 2007 to low stable levels from 2010 to 2015. Richness of planted forbs, on the other hand, were still increasing in high-richness broadcast treatments (e.g. 17–59% increase 2010–1015 in Minnesota). Two results in 2015 are reasons for concern: cover of planted species is only slightly over 50% in both Minnesota and Iowa, though with forbs still increasing, this may improve; and the cool-season exotic grasses Poa pratensis and Bromus inermis are increasing at both Minnesota and Iowa sites. Control of these invasive grasses will be necessary, but care will be needed to avoid negative impacts of control methods on natives.

Poroelastic properties of the Arbuckle Group in Oklahoma derived from well fluid level response to the 3 September 2016 Mw 5.8 Pawnee and 7 November 2016 Mw 5.0 Cushing earthquakes

Released May 11, 2017 00:00 EST

2017, Seismological Research Letters (88) 1-8

Kayla A. Kroll, Elizabeth S. Cochran, Kyle E. Murray

The Arbuckle Group (Arbuckle) is a basal sedimentary unit that is the primary target for saltwater disposal in Oklahoma. Thus, the reservoir characteristics of the Arbuckle, including how the poroelastic properties change laterally and over time are of significant interest. We report observations of fluid level changes in two monitoring wells in response to the 3 September 2016 Mw 5.8 Pawnee and the 7 November 2016 Mw 5.0 Cushing earthquakes. We investigate the relationship between static strain resulting from these events and the fluid level changes observed in the wells. We model the fluid level response by estimating static strains from a set of earthquake source parameters and spatiotemporal poroelastic properties of the Arbuckle in the neighborhood of the monitoring wells. Results suggest that both the direction of the observed fluid level step and the amplitude can be predicted from the computed volumetric strain change and a reasonable set of poroelastic parameters. Modeling results indicate that poroelastic parameters differ at the time of the Pawnee and Cushing earthquakes, with a moderately higher Skempton’s coefficient required to fit the response to the Cushing earthquake. This may indicate that dynamic shaking resulted in physical alteration of the Arbuckle at distances up to ∼50  km from the Pawnee earthquake.

Variable terrestrial GPS telemetry detection rates: Addressing the probability of successful acquisitions

Released May 11, 2017 00:00 EST

2017, Wildlife Society Bulletin

Kirsten E. Ironside, David J. Mattson, David Choate, David Stoner, Terry Arundel, Jered R. Hansen, Tad Theimer, Brandon Holton, Brian Jansen, Joseph O. Sexton, Kathleen Longshore, Thomas C. Edwards Jr., Michael Peters

Studies using global positioning system (GPS) telemetry rarely result in 100% fix success rates (FSR), which may bias datasets because data loss is systematic rather than a random process. Previous spatially explicit models developed to correct for sampling bias have been limited to small study areas, a small range of data loss, or were study-area specific. We modeled environmental effects on FSR from desert to alpine biomes, investigated the full range of potential data loss (0–100% FSR), and evaluated whether animal body position can contribute to lower FSR because of changes in antenna orientation based on GPS detection rates for 4 focal species: cougars (Puma concolor), desert bighorn sheep (Ovis canadensis nelsoni), Rocky Mountain elk (Cervus elaphus nelsoni), and mule deer (Odocoileus hemionus). Terrain exposure and height of over story vegetation were the most influential factors affecting FSR. Model evaluation showed a strong correlation (0.88) between observed and predicted FSR and no significant differences between predicted and observed FSRs using 2 independent validation datasets. We found that cougars and canyon-dwelling bighorn sheep may select for environmental features that influence their detectability by GPS technology, mule deer may select against these features, and elk appear to be nonselective. We observed temporal patterns in missed fixes only for cougars. We provide a model for cougars, predicting fix success by time of day that is likely due to circadian changes in collar orientation and selection of daybed sites. We also provide a model predicting the probability of GPS fix acquisitions given environmental conditions, which had a strong relationship (r 2 = 0.82) with deployed collar FSRs across species.

Magnitude of flood flows for selected annual exceedance probabilities for streams in Massachusetts

Released May 10, 2017 17:10 EST

2017, Scientific Investigations Report 2016-5156

Phillip J. Zarriello

The U.S. Geological Survey, in cooperation with the Massachusetts Department of Transportation, determined the magnitude of flood flows at selected annual exceedance prob­abilities (AEPs) at streamgages in Massachusetts and from these data developed equations for estimating flood flows at ungaged locations in the State. Flood magnitudes were deter­mined for the 50-, 20-, 10-, 4-, 2-, 1-, 0.5-, and 0.2-percent AEPs at 220 streamgages, 125 of which are in Massachusetts and 95 are in the adjacent States of Connecticut, New Hamp­shire, New York, Rhode Island, and Vermont. AEP flood flows were computed for streamgages using the expected moments algorithm weighted with a recently computed regional skew­ness coefficient for New England.

Regional regression equations were developed to estimate the magnitude of floods for selected AEP flows at ungaged sites from 199 selected streamgages and for 60 potential explanatory basin characteristics. AEP flows for 21 of the 125 streamgages in Massachusetts were not used in the final regional regression analysis, primarily because of regulation or redundancy. The final regression equations used general­ized least squares methods to account for streamgage record length and correlation. Drainage area, mean basin elevation, and basin storage explained 86 to 93 percent of the variance in flood magnitude from the 50- to 0.2-percent AEPs, respec­tively. The estimates of AEP flows at streamgages can be improved by using a weighted estimate that is based on the magnitude of the flood and associated uncertainty from the at-site analysis and the regional regression equations. Weighting procedures for estimating AEP flows at an ungaged site on a gaged stream also are provided that improve estimates of flood flows at the ungaged site when hydrologic characteristics do not abruptly change.

Urbanization expressed as the percentage of imperviousness provided some explanatory power in the regional regression; however, it was not statistically significant at the 95-percent confidence level for any of the AEPs examined. The effect of urbanization on flood flows indicates a complex interaction with other basin characteristics. Another complicating factor is the assumption of stationarity, that is, the assumption that annual peak flows exhibit no significant trend over time. The results of the analysis show that stationarity does not prevail at all of the streamgages. About 27 percent of streamgages in Massachusetts and about 42 percent of streamgages in adjacent States with 20 or more years of systematic record used in the study show a significant positive trend at the 95-percent confidence level. The remaining streamgages had both positive and negative trends, but the trends were not statistically significant. Trends were shown to vary over time. In particular, during the past decade (2004–2013), peak flows were persistently above normal, which may give the impression of positive trends. Only continued monitoring will provide the information needed to determine whether recent increases in annual peak flows are a normal oscillation or a true trend.

The analysis used 37 years of additional data obtained since the last comprehensive study of flood flows in Massa­chusetts. In addition, new methods for computing flood flows at streamgages and regionalization improved estimates of flood magnitudes at gaged and ungaged locations and better defined the uncertainty of the estimates of AEP floods.

Groundwater and streamflow information program, Kansas cooperative water science since 1895

Released May 10, 2017 13:15 EST

2017, General Information Product 176

Collin C. Painter, Ariele Kramer, Brian P. Kelly

The U.S. Geological Survey, in cooperation with State, local, and other Federal agencies, operates a network of streamgages throughout the State of Kansas. Data provided by this network are used to forecast floods, operate reservoirs, develop water policy, administer regulation of water, and perform interpretive analyses of streamflow. This data collection and analysis effort has been sustained since 1895 through cooperative matching fund programs that allow the USGS to work with cooperative agencies to solve groundwater and surface water challenges that affect citizens locally and throughout the Nation.  

Evaluation of the streamgage network for estimating streamflow statistics at ungaged sites in Pennsylvania and the Susquehanna River Basin in Pennsylvania and New York

Released May 10, 2017 09:30 EST

2017, Scientific Investigations Report 2016-5149

Ronald A. Sloto, Marla H. Stuckey, Scott A. Hoffman

The current (2015) streamgage network in Pennsylvania and the Susquehanna River Basin in Pennsylvania and New York was evaluated in order to design a network that would meet the hydrologic needs of many partners and serve a variety of purposes and interests, including estimation of streamflow statistics at ungaged sites. This study was done by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Environmental Protection and the Susquehanna River Basin Commission. The study area includes the Commonwealth of Pennsylvania and the Susquehanna River Basin in Pennsylvania and New York. For this study, 229 streamgages were identified as reference streamgages that could be used to represent ungaged watersheds. Criteria for a reference streamgage are a minimum of 10 years of continuous record, minimally altered streamflow, and a drainage area less than 1,500 square miles. Some of the reference streamgages have been discontinued but provide historical hydrologic information valuable in the determination of streamflow characteristics of ungaged watersheds. Watersheds in the study area not adequately represented by a reference streamgage were identified by examining a range of basin characteristics, the extent of geographic coverage, and the strength of estimated streamflow correlations between gaged and ungaged sites.

Basin characteristics were determined for the reference streamgage watersheds and the 1,662 12-digit hydrologic unit code (HUC12) subwatersheds in Pennsylvania and the Susquehanna River Basin using a geographic information system (GIS) spatial analysis and nationally available GIS datasets. Basin characteristics selected for this study include drainage area, mean basin elevation, mean basin slope, percentage of urbanized area, percentage of forested area, percentage of carbonate bedrock, mean annual precipitation, and soil thickness. A GIS spatial analysis was used to identify HUC12 subwatersheds outside the range of basin characteristics of the reference streamgages. There were 320 HUC12 subwatersheds, or 19 percent of the study area, with basin characteristics outside the range represented by the reference streamgage watersheds.

A GIS spatial analysis was used to identify geographic gaps in the streamgage network. For each streamgage, a watershed area, called the gage statistical area (GSA), was delineated. The GSA shows the drainage area within a specific drainage-area ratio of the streamgage for transfer of streamflow statistics from that streamgage to ungaged sites on the valid statistical reach of the GSA for a streamgage. In Pennsylvania, a drainage-area ratio of 0.33–3 times the drainage area of the ungaged site was found to perform as well as, if not better than, more traditional ratios such as 0.5–1.5 (or 2) for transfer of selected streamflow statistics. A total of 1,102 HUC12 subwatersheds, or 66 percent of the study area, are outside the GSA for a reference streamgage.

The USGS Baseline Streamflow Estimator (BaSE) program was used to determine how well HUC12 subwatersheds outside the streamgage GSAs are represented by the reference streamgage network in Pennsylvania, based on estimated streamflow correlation. The centroid of each HUC12 subwatershed was run through the BaSE program to determine the reference streamgage with the highest estimated streamflow correlation. There were 929 HUC12 subwatersheds in Pennsylvania, or 56 percent of the State, with an estimated correlation coefficient less than 0.96.

The results from the basin characteristic, geographic, and streamflow correlation analyses were combined to identify 1,405 HUC12 subwatersheds in Pennsylvania and the Susquehanna River Basin in Pennsylvania and New York that lack a representative reference, based on at least one identified gap. Of the 1,405 HUC12 subwatersheds, 139 exhibited all three gaps, indicating a 8-percent gap in the reference streamgage network.

Streamgages in areas with similar hydrologic characteristics and in close proximity to one another can potentially provide similar information (termed streamgages with high substitution potential). Streamgages were considered to have a high substitution potential with a nearby streamgage(s) if (1) the streamflow correlation coefficient was equal to or greater than 0.96, (2) the streamgages had 10 years of concurrent record, and (3) the streamgages are in the same watershed within the GSA of the streamgage. Seventy-four current (2015) streamgages with high substitution potential with at least one other streamgage were identified in the study area. Although these identified streamgages have a high substitution potential, they provide valuable streamflow information to a stakeholder. Selected primary uses of these streamgages were identified to determine the overall need for an individual streamgage.

Defining opportunities for collaboration across data life cycles

Released May 10, 2017 00:00 EST

2017, EOS, Transactions of the American Geophysical Union (98)

Jake Weltzin, Jennifer M. Bayer, Rebecca Scully

Monitoring natural resources—water, forests, and animal populations—is required to support effective management of natural resources. However, because monitoring activities are often specific to a discipline, issue, or agency, it is typically difficult to integrate data to answer questions that transcend geopolitical and jurisdictional boundaries. How do we reach the better data integration we need?

Eighty years of cooperative water science

Released May 09, 2017 11:45 EST

2017, General Information Product 174

Mandy L. Stone

The Equus Beds aquifer in south-central Kansas is a primary water source for the city of Wichita. The Equus Beds aquifer storage and recovery (ASR) project was developed to help the city of Wichita meet increasing current and future demands. The Equus Beds ASR project is a recent part of an 80-year cooperative water science effort with the city of Wichita. The U.S. Geological Survey (USGS) Kansas Water Science Center characterizes river and aquifer water-quality and quantity and evaluates changes that may or may not be related to ASR. The USGS data are used by the city of Wichita to make informed management decisions, satisfy regulatory requirements, and serve as a baseline to detect any subsequent changes that may be related to ASR.

Geophysical data collected during the 2014 minute 319 pulse flow on the Colorado River below Morelos Dam, United States and Mexico

Released May 09, 2017 00:00 EST

2017, Open-File Report 2017-1050

Jeffrey R. Kennedy, James B. Callegary, Jamie P. Macy, Jaime Reyes-Lopez, Marco Pérez-Flores

Geophysical methods were used to monitor infiltration during a water release, referred to as a “pulse flow,” in the Colorado River delta in March and April 2014. The pulse flow was enabled by Minute 319 of the 1944 United States–Mexico Treaty concerning water of the Colorado River. Fieldwork was carried out by the U.S. Geological Survey and the Centro de Investigación Científica y de Educación Superior de Ensenada as part of a binational effort to monitor the hydrologic effects of the pulse flow along the limitrophe (border) reach of the Colorado River and into Mexico. Repeat microgravity measurements were made at 25 locations in the southern limitrophe reach to quantify aquifer storage change during the pulse flow. Observed increases in storage along the river were greater with distance to the south, and the amount of storage change decreased away from the river channel. Gravity data at four monitoring well sites indicate specific yield equal to 0.32±0.05. Electromagnetic induction methods were used at 12 transects in the limitrophe reach of the river along the United States– Mexico border, and farther south into Mexico. These data, which are sensitive to variation in soil texture and water content, suggest relatively homogeneous conditions. Repeat direct-current resistivity measurements were collected at two locations to monitor groundwater elevation. Results indicate rapid groundwater-level rise during the pulse flow in the limitrophe reach and smaller variation at a more southern transect. Together, these data are useful for hydrogeologic characterization and hydrologic model development. Electronic data files are provided in the accompanying data release (Kennedy and others, 2016a).

Concentration and biochemical gradients of seston in Lake Ontario

Released May 09, 2017 00:00 EST

2017, Journal of Great Lakes Research

Patrick T. Kelly, Brian C. Weidel, Matthew R. Paufve, Brian P. O'Malley, James M. Watkins, Lars G. Rudstam, Stuart E. Jones

Spatial variability in resource quantity and quality may have important implications for the distribution and productivity of primary consumers. In Lake Ontario, ecosystem characteristics suggest the potential for significant spatial heterogeneity in seston quantity and quality, particularly due to the potential for nearshore-offshore gradients in allochthonous nutrient supply, and the formation of a deep chlorophyll layer (DCL) in July. We assessed total and zooplankton food particle size-fractionated chlorophyll a concentrations, as well as carbon-to-phosphorus stoichiometry and essential fatty acid composition of seston across a distance-from-shore and depth transect. We observed time, sampling depth, and distance from shore to be the best predictors of chlorophyll a concentration. Resource quality was much more homogenous in space, but there were strong patterns through time, as both stoichiometric and fatty acid qualities in general were greatest in May, and lowest in July/August. We did observe a peak in essential fatty acid concentration near the DCL in during time of formation, possibly due to differences in phytoplankton community composition between the DCL and epilimnion. These results suggest the potential for a spatially and temporally dynamic resource base for consumers in Lake Ontario, which may be important in developing a broader understanding of variable consumer productivity.

Microhabitat and biology of Sphaerium striatinum in a central New York stream

Released May 09, 2017 00:00 EST

2017, Hydrobiologia

Dawn E. Dittman, James H. Johnson, Christopher C. Nack

In many lotic systems, drastic declines in freshwater bivalve populations, including fingernail clams (Sphaeriidae), have created concerns about biodiversity and future ecosystem services. We examined the local occurrence of the historically common fingernail clam, Sphaerium striatinum, in a central New York stream. We sampled the density of sphaeriids and measured the associated habitat variables (substrate, depth, water flow) to test within-stream multivariate benthic microhabitat association. Size distribution, density, and diel feeding periodicity were measured as focal aspects of fingernail clam biology and ecology. S. striatinum tended to be found in microhabitats that had harder substrates and faster flow. The Labrador Creek fingernail clam local population had positive indicators (size distribution, density). There was significant diel periodicity in feeding behavior. The clams fed most actively during the 0400–0800 h periods. This kind of behavioral periodicity can indicate a significant ecological interaction between predators and bivalve prey. Increased understanding of the behavioral ecology of small native freshwater bivalves in an unimpacted headwater stream is a fundamental building block for development of overall ecological conservation goals for freshwater bivalves and their lotic habitats.

Development of a coastal drought index using salinity data

Released May 09, 2017 00:00 EST

2017, Bulletin of the American Meteorological Society (98) 753-766

Paul A. Conrads, Lisa S. Darby

A critical aspect of the uniqueness of coastal drought is the effects on the salinity dynamics of creeks, rivers, and estuaries. The location of the freshwater–saltwater interface along the coast is an important factor in the ecological and socioeconomic dynamics of coastal communities. Salinity is a critical response variable that integrates hydrologic and coastal dynamics including sea level, tides, winds, precipitation, streamflow, and tropical storms. The position of the interface determines the composition of freshwater and saltwater aquatic communities as well as the freshwater availability for water intakes. Many definitions of drought have been proposed, with most describing a decline in precipitation having negative impacts on the water supply. Indices have been developed incorporating data such as rainfall, streamflow, soil moisture, and groundwater levels. These water-availability drought indices were developed for upland areas and may not be ideal for characterizing coastal drought. The availability of real-time and historical salinity datasets provides an opportunity for the development of a salinity-based coastal drought index. An approach similar to the standardized precipitation index (SPI) was modified and applied to salinity data obtained from sites in South Carolina and Georgia. Using the SPI approach, the index becomes a coastal salinity index (CSI) that characterizes coastal salinity conditions with respect to drought periods of higher-saline conditions and wet periods of higher-freshwater conditions. Evaluation of the CSI indicates that it provides additional coastal response information as compared to the SPI and the Palmer hydrologic drought index, and the CSI can be used for different estuary types and for comparison of conditions along coastlines.

Drought, multi-seasonal climate, and wildfire in northern New Mexico

Released May 09, 2017 00:00 EST

2017, Climatic Change (142) 433-446

Ellis Margolis, Connie A. Woodhouse, Thomas W Swetnam

Wildfire is increasingly a concern in the USA, where 10 million acres burned in 2015. Climate is a primary driver of wildfire, and understanding fire-climate relationships is crucial for informing fire management and modeling the effects of climate change on fire. In the southwestern USA, fire-climate relationships have been informed by tree-ring data that extend centuries prior to the onset of fire exclusion in the late 1800s. Variability in cool-season precipitation has been linked to fire occurrence, but the effects of the summer North American monsoon on fire are less understood, as are the effects of climate on fire seasonality. We use a new set of reconstructions for cool-season (October–April) and monsoon-season (July–August) moisture conditions along with a large new fire scar dataset to examine relationships between multi-seasonal climate variability, fire extent, and fire seasonality in the Jemez Mountains, New Mexico (1599–1899 CE). Results suggest that large fires burning in all seasons are strongly influenced by the current year cool-season moisture, but fires burning mid-summer to fall are also influenced by monsoon moisture. Wet conditions several years prior to the fire year during the cool season, and to a lesser extent during the monsoon season, are also important for spring through late-summer fires. Persistent cool-season drought longer than 3 years may inhibit fires due to the lack of moisture to replenish surface fuels. This suggests that fuels may become increasingly limiting for fire occurrence in semi-arid regions that are projected to become drier with climate change.

Additive impacts of experimental climate change increase risk to an ectotherm at the Arctic's edge

Released May 08, 2017 00:00 EST

2017, Global Change Biology (23) 2262-2271

Jon M. Davenport, Blake R. Hossack, LeeAnn Fishback

Globally, Arctic and Subarctic regions have experienced the greatest temperature increases during the last 30 years. These extreme changes have amplified threats to the freshwater ecosystems that dominate the landscape in many areas by altering water budgets. Several studies in temperate environments have examined the adaptive capacity of organisms to enhance our understanding of the potential repercussions of warming and associated accelerated drying for freshwater ecosystems. However, few experiments have examined these impacts in Arctic or Subarctic freshwater ecosystems, where the climate is changing most rapidly. To evaluate the capacity of a widespread ectotherm to anticipated environmental changes, we conducted a mesocosm experiment with wood frogs (Rana sylvatica) in the Canadian Subarctic. Three warming treatments were fully crossed with three drying treatments to simulate a range of predicted changes in wetland environments. We predicted wetland warming and drying would act synergistically, with water temperature partially compensating for some of the negative effects of accelerated drying. Across all drying regimes, a 1 °C increase in water temperature increased the odds of survival by 1.79, and tadpoles in 52-day and 64-day hydroperiod mesocosms were 4.1–4.3 times more likely to survive to metamorphosis than tadpoles in 45-day mesocosms. For individuals who survived to metamorphosis, there was only a weak negative effect of temperature on size. As expected, increased temperatures accelerated tadpole growth through day 30 of the experiment. Our results reveal that one of the dominant herbivores in Subarctic wetlands, wood frog tadpoles, are capable of increasing their developmental rates in response to increased temperature and accelerated drying, but only in an additive manner. The strong negative effects of drying on survival, combined with lack of compensation between these two environmental drivers, suggest changes in the aquatic environment that are expected in this ecosystem will reduce mean fitness of populations across the landscape.

Science programs in Kansas

Released May 08, 2017 00:00 EST

2017, General Information Product 175

Brian P. Kelly, Ariele R. Kramer

The U.S. Geological Survey (USGS) is a non-regulatory Earth science agency within the Department of the Interior that provides impartial scientific information to describe and understand the health of our ecosystems and environment; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life. The USGS cooperates with Federal, State, tribal, and local agencies in Kansas to deliver long-term data in real-time and interpretive reports describing what those data mean to the public and resource management agencies. USGS science programs in Kansas provide real-time groundwater monitoring at more than 30 locations; streamflow monitoring at more than 232 locations; water-quality and trends in the Little Arkansas and Kansas Rivers; inflows and outflows of sediment to/from reservoirs and in streams; harmful algal bloom research in the Kansas River, Milford Lake, and Cheney Reservoir; water-quantity and water-quality effects of artificial groundwater recharge for the Equus Beds Aquifer Storage and Recovery project near Wichita, Kansas; compilation of Kansas municipal and irrigation water-use data statewide; the occurrence, effects, and movement of environmental pesticides, antibiotics, algal toxins, and taste-and-odor compounds; and funding to the Kansas Water Resources Research Institute to further research and education through Kansas universities.

Historical analysis of riparian vegetation change in response to shifting management objectives on the Middle Rio Grande

Released May 08, 2017 00:00 EST

2017, Land (6) 1-23

Roy Petrakis, Willem J.D. van Leeuwen, Miguel Villarreal, Paul Tashjian, Regina Dello Russo, Christopher A. Scott

Riparian ecosystems are valuable to the ecological and human communities that depend on them. Over the past century, they have been subject to shifting management practices to maximize human use and ecosystem services, creating a complex relationship between water policy, management, and the natural ecosystem. This has necessitated research on the spatial and temporal dynamics of riparian vegetation change. The San Acacia Reach of the Middle Rio Grande has experienced multiple management and river flow fluctuations, resulting in threats to its riparian and aquatic ecosystems. This research uses remote sensing data, GIS, a review of management decisions, and an assessment of climate to both quantify how riparian vegetation has been altered over time and provide interpretations of the relationships between riparian change and shifting climate and management objectives. This research focused on four management phases from 1935 to 2014, each highlighting different management practices and climate-driven river patterns, providing unique opportunities to observe a direct relationship between river management, climate, and riparian response. Overall, we believe that management practices coupled with reduced surface river-flows with limited overbank flooding influenced the compositional and spatial patterns of vegetation, including possibly increasing non-native vegetation coverage. However, recent restoration efforts have begun to reduce non-native vegetation coverage.

Evidence for distributed clockwise rotation of the crust in the northwestern United States from fault geometries and focal mechanisms

Released May 08, 2017 00:00 EST

2017, Tectonics

Thomas M. Brocher, Ray E. Wells, Andrew P. Lamb, Craig S. Weaver

Paleomagnetic and GPS data indicate that Washington and Oregon have rotated clockwise for the past 16 Myr. Late Cenozoic and Quaternary fault geometries, seismicity lineaments, and focal mechanisms provide evidence that this rotation is accommodated by north directed thrusting and right-lateral strike-slip faulting in Washington, and SW to W directed normal faulting and right-lateral strike-slip faulting to the east. Several curvilinear NW to NNW trending high-angle strike-slip faults and seismicity lineaments in Washington and NW Oregon define a geologic pole (117.7°W, 47.9°N) of rotation relative to North America. Many faults and focal mechanisms throughout northwestern U.S. and southwestern British Columbia have orientations consistent with this geologic pole as do GPS surface velocities corrected for elastic Cascadia subduction zone coupling. Large Quaternary normal faults radial to the geologic pole, which appear to accommodate crustal rotation via crustal extension, are widespread and can be found along the Lewis and Clark zone in Montana, within the Centennial fault system north of the Snake River Plain in Idaho and Montana, to the west of the Wasatch Front in Utah, and within the northern Basin and Range in Oregon and Nevada. Distributed strike-slip faults are most prominent in western Washington and Oregon and may serve to transfer slip between faults throughout the northwestern U.S.

Unconventional oil and gas spills: Materials, volumes, and risks to surface waters in four states of the U.S.

Released May 08, 2017 00:00 EST

2017, Science of the Total Environment (581-582) 369-377

Kelly O. Maloney, Sharon Baruch-Mordo, Lauren A. Patterson, Jean-Philippe Nicot, Sally Entrekin, Joe E. Fargione, Joseph M. Kiesecker, Kate E. Konschnik, Joseph N. Ryan, Anne M. Trainor, James E. Saiers, Hannah J. Wiseman

Extraction of oil and gas from unconventional sources, such as shale, has dramatically increased over the past ten years, raising the potential for spills or releases of chemicals, waste materials, and oil and gas. We analyzed spill data associated with unconventional wells from Colorado, New Mexico, North Dakota and Pennsylvania from 2005 to 2014, where we defined unconventional wells as horizontally drilled into an unconventional formation. We identified materials spilled by state and for each material we summarized frequency, volumes and spill rates. We evaluated the environmental risk of spills by calculating distance to the nearest stream and compared these distances to existing setback regulations. Finally, we summarized relative importance to drinking water in watersheds where spills occurred. Across all four states, we identified 21,300 unconventional wells and 6622 reported spills. The number of horizontal well bores increased sharply beginning in the late 2000s; spill rates also increased for all states except PA where the rate initially increased, reached a maximum in 2009 and then decreased. Wastewater, crude oil, drilling waste, and hydraulic fracturing fluid were the materials most often spilled; spilled volumes of these materials largely ranged from 100 to 10,000 L. Across all states, the average distance of spills to a stream was highest in New Mexico (1379 m), followed by Colorado (747 m), North Dakota (598 m) and then Pennsylvania (268 m), and 7.0, 13.3, and 20.4% of spills occurred within existing surface water setback regulations of 30.5, 61.0, and 91.4 m, respectively. Pennsylvania spills occurred in watersheds with a higher relative importance to drinking water than the other three states. Results from this study can inform risk assessments by providing improved input parameters on volume and rates of materials spilled, and guide regulations and the management policy of spills.

Unconventional oil and gas spills: Risks, mitigation priorities, and state reporting requirements

Released May 08, 2017 00:00 EST

2017, Environmental Science & Technology (51) 2563-2573

Lauren A. Patterson, Katherine E. Konschnik, Hannah Wiseman, Joseph Fargione, Kelly O. Maloney, Joseph M. Kiesecker, Jean-Philippe Nicot, Sharon Baruch-Mordo, Sally Entrekin, Anne Trainor, James Saiers

Rapid growth in unconventional oil and gas (UOG) has produced jobs, revenue, and energy, but also concerns over spills and environmental risks. We assessed spill data from 2005 to 2014 at 31 481 UOG wells in Colorado, New Mexico, North Dakota, and Pennsylvania. We found 2–16% of wells reported a spill each year. Median spill volumes ranged from 0.5 m3 in Pennsylvania to 4.9 m3 in New Mexico; the largest spills exceeded 100 m3. Seventy-five to 94% of spills occurred within the first three years of well life when wells were drilled, completed, and had their largest production volumes. Across all four states, 50% of spills were related to storage and moving fluids via flowlines. Reporting rates varied by state, affecting spill rates and requiring extensive time and effort getting data into a usable format. Enhanced and standardized regulatory requirements for reporting spills could improve the accuracy and speed of analyses to identify and prevent spill risks and mitigate potential environmental damage. Transparency for data sharing and analysis will be increasingly important as UOG development expands. We designed an interactive spills data visualization tool ( to illustrate the value of having standardized, public data.

Beyond exposure, sensitivity and adaptive capacity: A response based ecological framework to assess species climate change vulnerability

Released May 08, 2017 00:00 EST

2017, Climate Change Responses (4)

Lucas Fortini, Olivia Schubert

As the impacts of global climate change on species are increasingly evident, there is a clear need to adapt conservation efforts worldwide. Species vulnerability assessments (VAs) are increasingly used to summarize all relevant information to determine a species’ potential vulnerability to climate change and are frequently the first step in informing climate adaptation efforts. VAs commonly integrate multiple sources of information by utilizing a framework that distinguishes factors relevant to species exposure, sensitivity, and adaptive capacity. However, this framework was originally developed for human systems, and its use to evaluate species vulnerability has serious practical and theoretical limitations. By instead defining vulnerability as the degree to which a species is unable to exhibit any of the responses necessary for persistence under climate change (i.e., toleration of projected changes, migration to new climate-compatible areas, enduring in microrefugia, and evolutionary adaptation), we can bring VAs into the realm of ecological science without applying borrowed abstract concepts that have consistently challenged species-centric research and management. This response-based framework to assess species vulnerability to climate change allows better integration of relevant ecological data and past research, yielding results with much clearer implications for conservation and research prioritization.

Review: The size of the risk: Histories of multiple use in the Great Basin by Leisl Carr Childers

Released May 08, 2017 00:00 EST

2017, Pacific Historical Review (86) 348-349

Craig A. Johnson

In The Size of the Risk, Leisl Carr Childers chronicles the changing ways in which public lands of the Great Basin have been managed from the latter half of the nineteenth century through the late 1970s. The main focus is the State of Nevada, which constitutes the core of the Great Basin. Rather than proceeding chronologically, the book is organized by the uses to which lands were put, including grazing of cattle and sheep, weapons testing by the military, parks and recreation, and grazing of wild mustangs.

Review info: The size of the risk: Histories of multiple use in the Great Basin. By Leisl Carr Childers, 2015. ISBN: 9780806152530, 320pp.

Using publicly available data to quantify plant–pollinator interactions and evaluate conservation seeding mixes in the Northern Great Plains

Released May 08, 2017 00:00 EST

2017, Environmental Entomology

Clint R. Otto, Samuel O'Dell, R. B. Bryant, Ned H. Jr. Euliss, Rachel Bush, Matthew Smart

Concern over declining pollinators has led to multiple conservation initiatives for improving forage for bees in agroecosystems. Using data available through the Pollinator Library (, we summarize plant–pollinator interaction data collected from 2012–2015 on lands managed by the U.S. Fish and Wildlife Service and private lands enrolled in U.S. Department of Agriculture conservation programs in eastern North Dakota (ND). Furthermore, we demonstrate how plant–pollinator interaction data from the Pollinator Library and seed cost information can be used to evaluate hypothetical seeding mixes for pollinator habitat enhancements. We summarize records of 314 wild bee and 849 honey bee (Apis mellifera L.) interactions detected on 63 different plant species. The wild bee observations consisted of 46 species, 15 genera, and 5 families. Over 54% of all wild bee observations were represented by three generaBombus, Lassioglossum, and Melissodes. The most commonly visited forbs by wild bees were Monarda fistulosa, Sonchus arvensis, and Zizia aurea. The most commonly visited forbs by A. mellifera were Cirsium arvense, Melilotus officinalis, and Medicago sativa. Among all interactions, 13% of A. mellifera and 77% of wild bee observations were made on plants native to ND. Our seed mix evaluation shows that mixes may often need to be tailored to meet the unique needs of wild bees and managed honey bees in agricultural landscapes. Our evaluation also demonstrates the importance of incorporating both biologic and economic information when attempting to design cost-effective seeding mixes for supporting pollinators in a critically important part of the United States.

Evaluation of Caspian tern (Hydroprogne caspia) and snowy plover (Charadrius alexandrinus nivosus) nesting on modified islands at the Don Edwards San Francisco Bay National Wildlife Refuge, California—2016 Annual Report

Released May 08, 2017 00:00 EST

2017, Open-File Report 2017-1055

C. Alex Hartman, Joshua T. Ackerman, Mark P. Herzog, Cheryl Strong, David Trachtenbarg, Crystal A. Shore

Executive Summary

In order to address the 2008/10 and Supplemental 2014 NOAA Fisheries Biological Opinion for operation of the Federal Columbia River Power System, the U.S. Army Corps of Engineers (USACE) and the Bureau of Reclamation (Reclamation) developed and have begun implementation of Caspian tern (Hydroprogne caspia) management plans. This implementation includes redistribution of the Caspian terns in the Columbia River estuary and the mid-Columbia River region to reduce predation on salmonids listed under the Endangered Species Act. Key elements of the plans include (1) reducing nesting habitat for Caspian terns in the Columbia River estuary and the mid-Columbia River region, and (2) creating or modifying nesting habitat at alternative sites within the Caspian tern breeding range. USACE and Reclamation developed Caspian tern nesting habitat at the U.S. Fish and Wildlife Service Don Edwards San Francisco Bay National Wildlife Refuge (DENWR), California, prior to the 2015 nesting season. Furthermore, to reduce or eliminate potential conflicts between nesting Caspian terns and threatened western snowy plovers (Charadrius alexandrinus nivosus), nesting habitat for snowy plovers also was developed. Seven recently constructed islands within two managed ponds (Ponds A16 and SF2) of DENWR were modified to provide habitat attractive to nesting Caspian terns (5 islands) and snowy plovers (2 islands). These 7 islands were a subset of 46 islands recently constructed in Ponds A16 and SF2 to provide waterbird nesting habitat as part of the South Bay Salt Pond (SBSP) Restoration Project.

We used social attraction methods (decoys and electronic call systems) to attract Caspian terns and snowy plovers to these seven modified islands, and conducted surveys between March and September of 2015 and 2016 to evaluate nest numbers, nest density, and productivity. Results from the 2015 nesting season, the first year of the study, indicated that island modifications and social attraction measures were successful in establishing Caspian tern breeding colonies at Ponds A16 and SF2 of DENWR. The success of 2015 continued in 2016, the second year of the study. In 2016, Caspian terns nested on two of the five islands modified for Caspian terns (one island in Pond A16 and one island in Pond SF2). Caspian terns initiated at least 317 nests, fledged at least 158 chicks, and had a breeding success rate of 0.50 fledged chicks per breeding pair. This represents a 42 percent increase in nests initiated, a 9 percent decrease in the number of fledged chicks, and a 36 percent decrease in the number of chicks fledged per breeding pair in 2016 compared to 2015. Although overall productivity decreased from 2015, these results indicate that the Caspian tern breeding population on modified islands of the DENWR is increasing relative to 2015, the first year of the effort, and relative to years prior to 2015 when no breeding colonies of Caspian terns existed in Ponds A16 or SF2. These results indicate the effectiveness of social attraction measures in helping to establish tern nesting colonies in San Francisco Bay. Conversely, for the second year in a row, snowy plovers did not attempt to nest on any island in Ponds A16 and SF2. Social attraction measures similar to those used in this study, but targeting other colonial species such as Forster’s terns (Sterna forsteri) and American avocets (Recurvirostra americana), may help to establish waterbird breeding colonies at wetlands enhanced as part of the SBSP Restoration Project.

Quality-assurance plan for water-quality activities in the U.S. Geological Survey Washington Water Science Center

Released May 08, 2017 00:00 EST

2017, Open-File Report 2017-1044

Kathleen E. Conn, Raegan L. Huffman, Cynthia Barton

In accordance with guidelines set forth by the Office of Water Quality in the Water Mission Area of the U.S. Geological Survey, a quality-assurance plan has been created for use by the Washington Water Science Center (WAWSC) in conducting water-quality activities. This qualityassurance plan documents the standards, policies, and procedures used by the WAWSC for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures documented in this quality-assurance plan for water-quality activities complement the quality-assurance plans for surface-water and groundwater activities at the WAWSC.

Report of the workshop on evidence-based design of national wildlife health programs

Released May 08, 2017 00:00 EST

2017, Open-File Report 2017-1038

Natalie T. Nguyen, J. Paul Duff, Dolores Gavier-Widén, Tiggy Grillo, Hongxuan He, Hang Lee, Parntep Ratanakorn, Jolianne M. Rijks, Marie-Pierre Ryser-Degiorgis, Jonathan M. Sleeman, Craig Stephen, Toni Tana, Marcela Uhart, Patrick Zimmer


This report summarizes a Wildlife Disease Association sponsored workshop held in 2016. The overall objective of the workshop was to use available evidence and selected subject matter expertise to define the essential functions of a National Wildlife Health Program and the resources needed to deliver a robust and reliable program, including the basic infrastructure, workforce, data and information systems, governance, organizational capacity, and essential features, such as wildlife disease surveillance, diagnostic services, and epidemiological investigation. This workshop also provided the means to begin the process of defining the essential attributes of a national wildlife health program that could be scalable and adaptable to each nation’s needs.

Geomorphology, active tectonics, and landscape evolution in the Mid-Atlantic region: Chapter

Released May 08, 2017 00:00 EST

2015, Book chapter, GSA Field Guides

Frank J. Pazzaglia, Mark W. Carter, Claudio Berti, Ronald C. Counts, Gregory S. Hancock, David Harbor, Richard W. Harrison, Matthew J. Heller, Shannon Mahan, Helen Malenda, Ryan McKeon, Michelle S. Nelson, Phillip Prince, Tammy M. Rittenour, James Spotilla, G. Richard Whittecar

In 2014, the geomorphology community marked the 125th birthday of one of its most influential papers, “The Rivers and Valleys of Pennsylvania” by William Morris Davis. Inspired by Davis’s work, the Appalachian landscape rapidly became fertile ground for the development and testing of several grand landscape evolution paradigms, culminating with John Hack’s dynamic equilibrium in 1960. As part of the 2015 GSA Annual Meeting, the Geomorphology, Active Tectonics, and Landscape Evolution field trip offers an excellent venue for exploring Appalachian geomorphology through the lens of the Appalachian landscape, leveraging exciting research by a new generation of process-oriented geomorphologists and geologic field mapping. Important geomorphologic scholarship has recently used the Appalachian landscape as the testing ground for ideas on long- and short-term erosion, dynamic topography, glacial-isostatic adjustments, active tectonics in an intraplate setting, river incision, periglacial processes, and soil-saprolite formation.

This field trip explores a geologic and geomorphic transect of the mid-Atlantic margin, starting in the Blue Ridge of Virginia and proceeding to the east across the Piedmont to the Coastal Plain. The emphasis here will not only be on the geomorphology, but also the underlying geology that establishes the template and foundation upon which surface processes have etched out the familiar Appalachian landscape. The first day focuses on new and published work that highlights Cenozoic sedimentary deposits, soils, paleosols, and geomorphic markers (terraces and knickpoints) that are being used to reconstruct a late Cenozoic history of erosion, deposition, climate change, and active tectonics. The second day is similarly devoted to new and published work documenting the fluvial geomorphic response to active tectonics in the Central Virginia seismic zone (CVSZ), site of the 2011 M 5.8 Mineral earthquake and the integrated record of Appalachian erosion preserved on the Coastal Plain. The trip concludes on Day 3, joining the Kirk Bryan Field Trip at Great Falls, Virginia/ Maryland, to explore and discuss the dramatic processes of base-level fall, fluvial incision, and knickpoint retreat.

Large wood and in-stream habitat for juvenile coho salmon and larval lampreys in a Pacific Northwest stream

Released May 06, 2017 00:00 EST

2017, North American Journal of Fisheries Management

Rosalinda Gonzalez, Jason Dunham, Scott W. Lightcap, Jeffery R. McEnroe

The influences of large wood on Pacific salmon are well-studied, but studies of nonsalmonid species such as lampreys are uncommon. To address this need, we evaluated the potential effects of large wood on larval lampreys (Pacific Lamprey, Entosphenus tridentatus; and potentially Western Brook Lamprey Lampetra richardsoni), as well as juvenile Coho Salmon Oncorhynchus kisutch, in a small coastal Oregon stream. Our objectives were to 1) identify in-stream habitat characteristics associated with the presence of larval lampreys and abundance of juvenile Coho Salmon; and 2) evaluate how these characteristics were associated with in-stream wood. To address habitat use, we quantified presence of larval lampreys in 92 pools and abundance of juvenile Coho Salmon in 44 pools during summer low flows. We focused on a study reach where large wood was introduced into the stream between 2008 and 2009. Results indicated that presence of larval lampreys was significantly associated with availability of fine sediment and deeper substrate. The abundance of juvenile Coho Salmon (fish/pool) was strongly associated with pool surface area and to a weaker extent with the proportion of cobble and boulder substrates in pools. Pools with wood, regardless of whether they were formed by wood, had significantly greater coverage of fine sediment, deeper substrate, and greater pool surface area. Taken together, these results suggest that in-stream wood can provide habitat associated with presence of larval lampreys and greater abundance of juvenile Coho Salmon.

Characterization of peak streamflows and flood inundation at selected areas in North Carolina following Hurricane Matthew, October 2016

Released May 05, 2017 12:00 EST

2017, Open-File Report 2017-1047

Jonathan W. Musser, Kara M. Watson, Anthony J. Gotvald

The passage of Hurricane Matthew through central and eastern North Carolina during October 7–9, 2016, brought heavy rainfall, which resulted in major flooding. More than 15 inches of rain was recorded in some areas. More than 600 roads were closed, including Interstates 95 and 40, and nearly 99,000 structures were affected by floodwaters. Immediately following the flooding, the U.S. Geological Survey documented 267 high-water marks, of which 254 were surveyed. North Carolina Emergency Management documented and surveyed 353 high-water marks. Using a subset of these highwater marks, six flood-inundation maps were created for hard-hit communities. Digital datasets of the inundation areas, study reach boundary, and water-depth rasters are available for download. In addition, peak gage-height data, peak streamflow data, and annual exceedance probabilities (in percent) were determined for 24 U.S. Geological Survey streamgages located near the heavily flooded communities.

U.S. Geological Survey Science—Improving the value of the Chesapeake Bay watershed

Released May 05, 2017 10:00 EST

2017, Fact Sheet 2017-3031

Scott W. Phillips, Kenneth Hyer, Elizabeth Goldbaum


Congress directed the Federal Government to work with States to restore the Nation’s largest estuary.

Chesapeake Bay restoration provides important economic and ecological benefits:

The relationship between female brooding and male nestling provisioning: does climate underlie geographic variation in sex roles?

Released May 05, 2017 00:00 EST

2017, Journal of Avian Biology (48) 220-228

Jongmin Yoon, Helen Sofaer, T. Scott Sillett, Scott A. Morrison, Cameron K. Ghalambor

Comparative studies of populations occupying different environments can provide insights into the ecological conditions affecting differences in parental strategies, including the relative contributions of males and females. Male and female parental strategies reflect the interplay between ecological conditions, the contributions of the social mate, and the needs of offspring. Climate is expected to underlie geographic variation in incubation and brooding behavior, and can thereby affect both the absolute and relative contributions of each sex to other aspects of parental care such as offspring provisioning. However, geographic variation in brooding behavior has received much less attention than variation in incubation attentiveness or provisioning rates. We compared parental behavior during the nestling period in populations of orange-crowned warblers Oreothlypis celata near the northern (64°N) and southern (33°N) boundaries of the breeding range. In Alaska, we found that males were responsible for the majority of food delivery whereas the sexes contributed equally to provisioning in California. Higher male provisioning in Alaska appeared to facilitate a higher proportion of time females spent brooding the nestlings. Surprisingly, differences in brooding between populations could not be explained by variation in ambient temperature, which was similar between populations during the nestling period. While these results represent a single population contrast, they suggest additional hypotheses for the ecological correlates and evolutionary drivers of geographic variation in brooding behavior, and the factors that shape the contributions of each sex.

Biogeographic comparison of Lophelia-associated bacterial communities in the Western Atlantic reveals conserved core microbiome

Released May 05, 2017 00:00 EST

2017, Frontiers in Microbiology (8)

Christina A. Kellogg, Dawn Goldsmith, Michael A. Gray

Over the last decade, publications on deep-sea corals have tripled. Most attention has been paid to Lophelia pertusa, a globally distributed scleractinian coral that creates critical three-dimensional habitat in the deep ocean. The bacterial community associated with L. pertusa has been previously described by a number of studies at sites in the Mediterranean Sea, Norwegian fjords, off Great Britain, and in the Gulf of Mexico (GOM). However, use of different methodologies prevents direct comparisons in most cases. Our objectives were to address intra-regional variation and to identify any conserved bacterial core community. We collected samples from three distinct colonies of L. pertusa at each of four locations within the western Atlantic: three sites within the GOM and one off the east coast of the United States. Amplicon libraries of 16S rRNA genes were generated using primers targeting the V4–V5 hypervariable region and 454 pyrosequencing. The dominant phylum was Proteobacteria (75–96%). At the family level, 80–95% of each sample was comprised of five groups: Pirellulaceae, Pseudonocardiaceae, Rhodobacteraceae, Sphingomonadaceae, and unclassified Oceanospirillales. Principal coordinate analysis based on weighted UniFrac distances showed a clear distinction between the GOM and Atlantic samples. Interestingly, the replicate samples from each location did not always cluster together, indicating there is not a strong site-specific influence. The core bacterial community, conserved in 100% of the samples, was dominated by the operational taxonomic units of genera Novosphingobium and Pseudonocardia, both known degraders of aromatic hydrocarbons. The sequence of another core member, Propionibacterium, was also found in prior studies of L. pertusa from Norway and Great Britain, suggesting a role as a conserved symbiont. By examining more than 40,000 sequences per sample, we found that GOM samples were dominated by the identified conserved core sequences, whereas open Atlantic samples had a much higher proportion of locally consistent bacteria. Further, predictive functional profiling highlights the potential for the L. pertusa microbiome to contribute to chemoautotrophy, nutrient cycling, and antibiotic production.

Patterns in Greater Sage-grouse population dynamics correspond with public grazing records at broad scales

Released May 05, 2017 00:00 EST

2017, Ecological Applications

Adrian Monroe, Cameron Aldridge, Timothy J. Assal, Kari E. Veblen, David A. Pyke, Michael L. Casazza

Human land use, such as livestock grazing, can have profound yet varied effects on wildlife interacting within common ecosystems, yet our understanding of land-use effects is often generalized from short-term, local studies that may not correspond with trends at broader scales. Here we used public land records to characterize livestock grazing across Wyoming, USA, and we used Greater Sage-grouse (Centrocercus urophasianus) as a model organism to evaluate responses to livestock management. With annual counts of male Sage-grouse from 743 leks (breeding display sites) during 2004–2014, we modeled population trends in response to grazing level (represented by a relative grazing index) and timing across a gradient in vegetation productivity as measured by the Normalized Vegetation Difference Index (NDVI). We found grazing can have both positive and negative effects on Sage-grouse populations depending on the timing and level of grazing. Sage-grouse populations responded positively to higher grazing levels after peak vegetation productivity, but populations declined when similar grazing levels occurred earlier, likely reflecting the sensitivity of cool-season grasses to grazing during peak growth periods. We also found support for the hypothesis that effects of grazing management vary with local vegetation productivity. These results illustrate the importance of broad-scale analyses by revealing patterns in Sage-grouse population trends that may not be inferred from studies at finer scales, and could inform sustainable grazing management in these ecosystems.

Oil and gas development influences big-game hunting in Wyoming

Released May 05, 2017 00:00 EST

2017, Journal of Wildlife Management (81) 379-392

Monica Dorning, Steven L. Garman, James E. Diffendorfer, Darius J. Semmens, Todd J. Hawbaker, Kenneth J. Bagstad

Development from extracting oil and gas resources can have unintended effects on multiple ecosystem functions, with cascading effects on wildlife, ecosystem services, and local economies. Big-game hunting opportunities may be closely related to these effects, but empirical analyses of impacts of energy development on hunting are limited. We examined the influence of oil and gas development density on harvest efficiency, or harvest per unit of hunter effort, within all hunt areas in Wyoming, USA, from 2008 to 2014 for 3 big-game species: elk (Cervus canadensis), mule deer (Odocoileus hemionus), and pronghorn (Antilocapra americana). Using harvest/hunter day as the response variable, we compared linear mixed-effects models for each species that included total well density (i.e., all wells constructed up to the year of record), active well density (i.e., only those wells currently producing oil or gas in that year), or neither as a predictor variable. We used well densities as indicators of development in the absence of data specifying the locations of other oil and gas infrastructure (e.g., roads, well pads). Models also accounted for the fixed effects of road density, hunter density, proportion of the area that is public land with unrestricted hunter access, proportion of the area that is forested, year of observation, and random effects of variation among hunt areas nested within associated game herd units. Presence of oil and gas wells had a positive influence on harvest efficiency for elk and mule deer. Although there was no overall effect to pronghorn, there was a negative influence of wells on juvenile pronghorn harvest efficiency. Changes in harvest efficiency due to expanding oil and gas development could alter the time spent hunting by hunters and their chances of harvesting an animal. This could have subsequent impacts on hunter satisfaction, game populations, and economic revenue generated from recreational hunters.

Using strain rates to forecast seismic hazards

Released May 05, 2017 00:00 EST

2017, EOS - Earth & Space Science News (98)

Eileen Evans

One essential component in forecasting seismic hazards is observing the gradual accumulation of tectonic strain accumulation along faults before this strain is suddenly released as earthquakes. Typically, seismic hazard models are based on geologic estimates of slip rates along faults and historical records of seismic activity, neither of which records actively accumulating strain. But this strain can be estimated by geodesy: the precise measurement of tiny position changes of Earth’s surface, obtained from GPS, interferometric synthetic aperture radar (InSAR), or a variety of other instruments.

Priority effects among young-of-the-year fish: Reduced growth of bluegill sunfish (Lepomis macrochirus) caused by yellow perch (Perca flavescens)?

Released May 05, 2017 00:00 EST

2012, Freshwater Biology (57) 654-665

Mark A. Kaemingk, Jeff C. Jolley, David W. Willis, Steven R. Chipps

1. When available, Daphnia spp. are often preferred by age-0 yellow perch and bluegill sunfish because of energetic profitability. We hypothesised that predation by age-0 yellow perch could lead to a midsummer decline (MSD) of Daphnia spp. and that priority effects may favour yellow perch because they hatch before bluegill, allowing them to capitalise on Daphnia spp. prior to bluegill emergence.

2. Data were collected from 2004 to 2010 in Pelican Lake, Nebraska, U.S.A. The lake experienced a prolonged MSD in all but 1 year (2005), generally occurring within the first 2 weeks of June except in 2008 and 2010 when it occurred at the end of June. MSD timing is not solely related to seasonal patterns of age-0 yellow perch consumption. Nevertheless, when Daphnia spp. biomass was low during 2004 and 2006–2010 (<4 mg wet weight L−1), predation by age-0 yellow perch seems to have suppressed Daphnia spp. biomass (i.e. <1.0 mg wet weight L−1). The exception was 2005 when age-0 yellow perch were absent.

3. Growth of age-0 bluegill was significantly faster in 2005, when Daphnia spp. were available in greater densities (>4 mg wet weight L−1) compared with the other years (<0.2 mg wet weight L−1).

4. We conclude that age-0 yellow perch are capable of reducing Daphnia biomass prior to the arrival of age-0 bluegill, ultimately slowing bluegill growth. Thus, priority effects favour age-0 yellow perch when competing with age-0 bluegill for Daphnia. However, these effects may be minimised if there is a shorter time between hatching of the two species, higher Daphnia spp. densities or lower age-0 yellow perch densities.

Simulation of groundwater flow in the glacial aquifer system of northeastern Wisconsin with variable model complexity

Released May 04, 2017 12:30 EST

2017, Scientific Investigations Report 2017-5010

Paul F. Juckem, Brian R. Clark, Daniel T. Feinstein

The U.S. Geological Survey, National Water-Quality Assessment seeks to map estimated intrinsic susceptibility of the glacial aquifer system of the conterminous United States. Improved understanding of the hydrogeologic characteristics that explain spatial patterns of intrinsic susceptibility, commonly inferred from estimates of groundwater age distributions, is sought so that methods used for the estimation process are properly equipped. An important step beyond identifying relevant hydrogeologic datasets, such as glacial geology maps, is to evaluate how incorporation of these resources into process-based models using differing levels of detail could affect resulting simulations of groundwater age distributions and, thus, estimates of intrinsic susceptibility.

This report describes the construction and calibration of three groundwater-flow models of northeastern Wisconsin that were developed with differing levels of complexity to provide a framework for subsequent evaluations of the effects of process-based model complexity on estimations of groundwater age distributions for withdrawal wells and streams. Preliminary assessments, which focused on the effects of model complexity on simulated water levels and base flows in the glacial aquifer system, illustrate that simulation of vertical gradients using multiple model layers improves simulated heads more in low-permeability units than in high-permeability units. Moreover, simulation of heterogeneous hydraulic conductivity fields in coarse-grained and some fine-grained glacial materials produced a larger improvement in simulated water levels in the glacial aquifer system compared with simulation of uniform hydraulic conductivity within zones. The relation between base flows and model complexity was less clear; however, the relation generally seemed to follow a similar pattern as water levels. Although increased model complexity resulted in improved calibrations, future application of the models using simulated particle tracking is anticipated to evaluate if these model design considerations are similarly important for understanding the primary modeling objective - to simulate reasonable groundwater age distributions.

Evaluation of laser ablation double-focusing SC-ICPMS for “common” lead isotopic measurements in silicate glasses and mineral

Released May 04, 2017 00:00 EST

2017, Journal of Analytical Atomic Spectrometry

Aaron J. Pietruszka, Leonid Neymark

An analytical method for the in situ measurement of “common” Pb isotope ratios in silicate glasses and minerals using a 193-nm excimer laser ablation (LA) system with a double-focusing single-collector (SC)-ICPMS is presented and evaluated as a possible alternative to multiple-collector (MC)-ICPMS. This LA-SC-ICPMS technique employs fast-scanning ion deflectors to sequentially place a series of flat-topped isotope peaks into a single ion-counting detector at a fixed accelerating voltage and magnetic field strength. Reference materials (including NIST, MPI-DING, and USGS glasses) are used to identify two analytical artifacts on the Pb isotope ratios (expressed here as heavier/lighter isotopes) when corrected for mass bias relative to NIST SRM610. The first artifact is characterized by anomalously low Pb isotope ratios (~0.1%/AMU) when SRM610 is analyzed in raster mode as an unknown at small spot sizes (<25 µm), which may indicate that (1) SRM610 is isotopically heterogeneous on a small length scale and/or (2) there is a non-spectral matrix effect on the Pb isotope ratios related to differences in spot size. The second artifact is characterized by anomalously high Pb isotope ratios (<0.1%/AMU) for NIST SRM612 (in raster mode) and some Fe-rich glass reference materials (BCR-2G, GOR132-G, and T1-G). These offsets are thought to be caused by one or more non-spectral matrix effects related to differences in the ablation behavior, composition, or physical properties of these reference materials compared to the bracketing SRM610 standard. The precision (±2SD) of our LA-SC-ICPMS Pb isotopic measurements is similar to (207Pb/206Pb and 208Pb/206Pb, or 20XPb/206Pb) or better than (206Pb/204Pb,207Pb/204Pb, and 208Pb/204Pb, or 20XPb/204Pb) a series of published studies that used a different type of SC-ICPMS and obtained a factor of ~3-4 higher sensitivity for Pb. An increase in the sensitivity of our LA-SC-ICPMS would likely improve the precision of the 20XPb/206Pb and 20XPb/204Pb ratios for low-Pb materials (<5 ppm), possibly making the technique broadly similar to LA-MC-ICPMS (particularly compared to methods that rely upon at least one ion-counting detector). Further improvement in the precision of the 20XPb/206Pb and 20XPb/204Pb ratios for high-Pb materials (>5 ppm) by LA-SC-ICPMS is unlikely, and in this case, LA-MC-ICPMS remains the preferable analytical technique.

Analytical validation of a reverse transcriptase droplet digital PCR (RT-ddPCR) for quantitative detection of infectious hematopoietic necrosis virus

Released May 04, 2017 00:00 EST

2017, Journal of Virological Methods (245) 73-80

Peng Jia, Maureen Purcell, Guang Pan, Jinjin Wang, Shifu Kan, Yin Liu, Xiaocong Zheng, Xiujie SHi, Junqiang He, Li Yu, Qunyi Hua, Tikang Lu, Wensheng Lan, James Winton, Ningyi Jin, Hong Liu

Infectious hematopoietic necrosis virus (IHNV) is an important pathogen of salmonid fishes. A validated universal reverse transcriptase quantitative PCR (RT-qPCR) assay that can quantify levels of IHNV in fish tissues has been previously reported. In the present study, we adapted the published set of IHNV primers and probe for use in a reverse-transcriptase droplet digital PCR (RT-ddPCR) assay for quantification of the virus in fish tissue samples. The RT-ddPCR and RT-qPCR assays detected 13 phylogenetically diverse IHNV strains, but neither assay produced detectable amplification when RNA from other fish viruses was used. The RT-ddPCR assay had a limit of detection (LOD) equating to 2.2 plaque forming units (PFU)/μl while the LOD for the RT-qPCR was 0.2 PFU/μl. Good agreement (69.4–100%) between assays was observed when used to detect IHNV RNA in cell culture supernatant and tissues from IHNV infected rainbow trout (Oncorhynchus mykiss) and arctic char (Salvelinus alpinus). Estimates of RNA copy number produced by the two assays were significantly correlated but the RT-qPCR consistently produced higher estimates than the RT-ddPCR. The analytical properties of the N gene RT-ddPCR test indicated that this method may be useful to assess IHNV RNA copy number for research and diagnostic purposes. Future work is needed to establish the within and between laboratory diagnostic performance of the RT-ddPCR assay.

Eastern Denali Fault surface trace map, eastern Alaska and Yukon, Canada

Released May 04, 2017 00:00 EST

2017, Open-File Report 2017-1049

Adrian M. Bender, Peter J. Haeussler

We map the 385-kilometer (km) long surface trace of the right-lateral, strike-slip Denali Fault between the Totschunda-Denali Fault intersection in Alaska, United States and the village of Haines Junction, Yukon, Canada. In Alaska, digital elevation models based on light detection and ranging and interferometric synthetic aperture radar data enabled our fault mapping at scales of 1:2,000 and 1:10,000, respectively. Lacking such resources in Yukon, we developed new structure-from-motion digital photogrammetry products from legacy aerial photos to map the fault surface trace at a scale of 1:10,000 east of the international border. The section of the fault that we map, referred to as the Eastern Denali Fault, did not rupture during the 2002 Denali Fault earthquake (moment magnitude 7.9). Seismologic, geodetic, and geomorphic evidence, along with a paleoseismic record of past ground-rupturing earthquakes, demonstrate Holocene and contemporary activity on the fault, however. This map of the Eastern Denali Fault surface trace complements other data sets by providing an openly accessible digital interpretation of the location, length, and continuity of the fault’s surface trace based on the accompanying digital topography dataset. Additionally, the digitized fault trace may provide geometric constraints useful for modeling earthquake scenarios and related seismic hazard.

Baseline and projected future carbon storage and carbon fluxes in ecosystems of Hawai‘i

Released May 04, 2017 00:00 EST

2017, Professional Paper 1834

Paul C. Selmants, Christian P. Giardina, James D. Jacobi, Zhiliang Zhu, editor(s)

This assessment was conducted to fulfill the requirements of section 712 of the Energy Independence and Security Act of 2007 and to improve understanding of factors influencing carbon balance in ecosystems of Hawai‘i. Ecosystem carbon storage, carbon fluxes, and carbon balance were examined for major terrestrial ecosystems on the seven main Hawaiian islands in two time periods: baseline (from 2007 through 2012) and future (projections from 2012 through 2061). The assessment incorporated observed data, remote sensing, statistical methods, and simulation models. The national assessment has been completed for the conterminous United States, using methodology described in SIR 2010-5233, with results provided in three regional reports (PP 1804, PP 1797, and PP 1897), and for Alaska, with results provided in PP 1826.

The U.S. Geological Survey Monthly Water Balance Model Futures Portal

Released May 03, 2017 12:15 EST

2017, Open-File Report 2016-1212

Andrew R. Bock, Lauren E. Hay, Steven L. Markstrom, Christopher Emmerich, Marian Talbert

The U.S. Geological Survey Monthly Water Balance Model Futures Portal ( is a user-friendly interface that summarizes monthly historical and simulated future conditions for seven hydrologic and meteorological variables (actual evapotranspiration, potential evapotranspiration, precipitation, runoff, snow water equivalent, atmospheric temperature, and streamflow) at locations across the conterminous United States (CONUS).

The estimates of these hydrologic and meteorological variables were derived using a Monthly Water Balance Model (MWBM), a modular system that simulates monthly estimates of components of the hydrologic cycle using monthly precipitation and atmospheric temperature inputs. Precipitation and atmospheric temperature from 222 climate datasets spanning historical conditions (1952 through 2005) and simulated future conditions (2020 through 2099) were summarized for hydrographic features and used to drive the MWBM for the CONUS. The MWBM input and output variables were organized into an open-access database. An Open Geospatial Consortium, Inc., Web Feature Service allows the querying and identification of hydrographic features across the CONUS. To connect the Web Feature Service to the open-access database, a user interface—the Monthly Water Balance Model Futures Portal—was developed to allow the dynamic generation of summary files and plots  based on plot type, geographic location, specific climate datasets, period of record, MWBM variable, and other options. Both the plots and the data files are made available to the user for download


Arsenic and uranium in private wells in Connecticut, 2013-15

Released May 03, 2017 09:45 EST

2017, Open-File Report 2017-1046

Sarah M. Flanagan, Craig J. Brown

The occurrence of arsenic and uranium in groundwater at concentrations that exceed drinking-water standards is a concern because of the potential adverse effects on human health. Some early studies of arsenic occurrence in groundwater considered anthropogenic causes, but more recent studies have focused on sources of naturally occurring arsenic to groundwater, such as minerals within aquifer materials that are in contact with groundwater. Arsenic and uranium in groundwater in New England have been shown to have a strong association to the geologic setting and nearby streambed sediment concentrations. In New Hampshire and Massachusetts, arsenic and uranium concentrations greater than human-health benchmarks have shown distinct spatial patterns when related to the bedrock units mapped at the local scale.

The Connecticut Department of Public Health (DPH) reported that there are about 322,600 private wells in Connecticut serving approximately 823,000 people, or 23 percent of the State’s population. The State does not require that existing private wells be routinely tested for arsenic, uranium, or other contaminants; consequently, private wells are only sampled at the well owner’s discretion or when they are newly constructed. The U.S. Geological Survey (USGS), in cooperation with the DPH, completed an assessment in 2016 on the distribution of concentrations of arsenic and uranium in groundwater from bedrock in Connecticut. This report presents the major findings for arsenic and uranium concentrations from water samples collected from 2013 to 2015 from private wells.

Designing ecological climate change impact assessments to reflect key climatic drivers

Released May 03, 2017 00:00 EST

2017, Global Change Biology

Helen Sofaer, Joseph J. Barsugli, Catherine S. Jarnevich, John T. Abatzoglou, Marian Talbert, Brian Miller, Jeffrey T. Morisette

Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive – such as means or extremes – can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the ‘model space’ approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling.

Accounting for sampling patterns reverses the relative importance of trade and climate for the global sharing of exotic plants

Released May 03, 2017 00:00 EST

2017, Global Ecology and Biogeography

Helen Sofaer, Catherine S. Jarnevich


The distributions of exotic species reflect patterns of human-mediated dispersal, species climatic tolerances and a suite of other biotic and abiotic factors. The relative importance of each of these factors will shape how the spread of exotic species is affected by ongoing economic globalization and climate change. However, patterns of trade may be correlated with variation in scientific sampling effort globally, potentially confounding studies that do not account for sampling patterns.



Time period

Museum records, generally from the 1800s up to 2015.

Major taxa studied

Plant species exotic to the United States.


We used data from the Global Biodiversity Information Facility (GBIF) to summarize the number of plant species with exotic occurrences in the United States that also occur in each other country world-wide. We assessed the relative importance of trade and climatic similarity for explaining variation in the number of shared species while evaluating several methods to account for variation in sampling effort among countries.


Accounting for variation in sampling effort reversed the relative importance of trade and climate for explaining numbers of shared species. Trade was strongly correlated with numbers of shared U.S. exotic plants between the United States and other countries before, but not after, accounting for sampling variation among countries. Conversely, accounting for sampling effort strengthened the relationship between climatic similarity and species sharing. Using the number of records as a measure of sampling effort provided a straightforward approach for the analysis of occurrence data, whereas species richness estimators and rarefaction were less effective at removing sampling bias.

Main conclusions

Our work provides support for broad-scale climatic limitation on the distributions of exotic species, illustrates the need to account for variation in sampling effort in large biodiversity databases, and highlights the difficulty in inferring causal links between the economic drivers of invasion and global patterns of exotic species occurrence.

A rapid diagnostic test and mobile "lab in a suitcase" platform for detecting Ceratocystis spp. responsible for Rapid ‘Ōhi‘a Death

Released May 02, 2017 00:00 EST

2017, Report

Carter T. Atkinson, William Watcher-Weatherwax, Kylle Roy, Wade P Heller, Lisa Keith

We describe a field compatible molecular diagnostic test for two new species of Ceratocystis that infect `ōhi`a (Metrosideros polymorpha) and cause the disease commonly known as Rapid `Ōhi`a Death. The diagnostic is based on amplification of a DNA locus within the internal transcribed spacer region that separates fungal 5.8S ribosomal genes. The assay uses forward and reverse primers, recombinase polymerase, and a fluorescent probe that allows isothermal (40oC) amplification and simultaneous quantification of a 115 base pair product with a battery operated fluorometer. DNA extractions are field compatible and can be done by heating wood drill shavings to 100oC in Instagene® solution containing Chelex® resin to bind potential amplification inhibitors. The initial heat treatment is followed by a short bead beating step with steel ball bearings and zirconium beads to release DNA. DNA is subsequently purified with a magnetic bead based extraction method that does not require silica columns or centrifugation. The assay is designed around a portable “lab-in-a-suitcase” platform that includes a portable fluorometer, miniature centrifuge, and heat block that operate off either 120V AC power sources or a 12 volt battery with a portable inverter, a magnetic rack designed for 1.5 ml tubes and magnetic bead DNA purification, pipettes and consumable reagents and tubes. The entire assay from DNA extraction to results can be performed in less than 90 minutes on up to six independent samples plus a positive and negative control. Sensitivity based on suspensions of Ceratocystis endoconidia (spores) that were added to wood shavings and processed under field conditions by Instagene® magnetic bead DNA extraction was up to 163 spores/mg wood for Species A and 55 spores/mg wood for Species B in 95% of replicates as determined by probit analysis. Sensitivity increased 5–10 fold to 19 spores/mg wood for Species A and 9 spores/mg wood for Species B when extractions were performed with a commercial, silica column based DNA purification kit. The test did not cross react with other common fungi that have been isolated from `ōhi`a.

Land change monitoring, assessment, and projection (LCMAP) revolutionizes land cover and land change research

Released May 02, 2017 00:00 EST

2017, General Information Product 172

Steven Young

When nature and humanity change Earth’s landscapes - through flood or fire, public policy, natural resources management, or economic development - the results are often dramatic and lasting.

Wildfires can reshape ecosystems. Hurricanes with names like Sandy or Katrina will howl for days while altering the landscape for years. One growing season in the evolution of drought-resistant genetics can transform semiarid landscapes into farm fields.

In the past, valuable land cover maps created for understanding the effects of those events - whether changes in wildlife habitat, water-quality impacts, or the role land use and land cover play in affecting weather and climate - came out at best every 5 to 7 years. Those high quality, high resolution maps were good, but users always craved more: even higher quality data, additional land cover and land change variables, more detailed legends, and most importantly, more frequent land change information.

Now a bold new initiative called Land Change Monitoring, Assessment, and Projection (LCMAP) promises to fulfill that demand.

Developed at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center in Sioux Falls, South Dakota, LCMAP provides definitive, timely information on how, why, and where the planet is changing. LCMAP’s continuous monitoring process can detect changes as they happen every day that Landsat satellites acquire clear observations. The result will be to place near real-time information in the hands of land and resource managers who need to understand the effects these changes have on landscapes.

Long-term forest productivity: Chapter 11

Released May 01, 2017 00:00 EST

2017, Book chapter

Bernard T. Bormann, Steven S. Perakis, Robyn Darbyshire, Jeff Hatten

Deanna H. Olson, Beatrice Van Horne, editor(s)

No abstract available.

Enhancing public trust in Federal forest management: Chapter 18

Released May 01, 2017 00:00 EST

2017, Book chapter, People, forests, and change: Lessons from the Pacific Northwest

Michael Paul Nelson, Hannah Gosnell, Dana R. Warren, Chelsea Batavia, Matthew Betts, Julia Burton, Emily Jane Davis, Mark Schulze, Catalina Segura, Cheryl Ann Friesen, Steven S. Perakis

No abstract available.

Aquatic-riparian systems: Chapter 14

Released May 01, 2017 00:00 EST

2017, Book chapter, People, forests, and change: Lessons from the Pacific Northwest

Deanna H. Olson, Sherri L. Johnson, Paul D. Anderson, Brooke E. Penaluna, Jason B. Dunham

 No abstract available.


Released May 01, 2017 00:00 EST

2017, Book chapter, Encyclopedia of geochemistry

Charles N. Alpers

No abstract available.

Datasheet: Pseudogymnoascus destructans (white-nose syndrome fungus)

Released May 01, 2017 00:00 EST

2017, Book chapter, Invasive species compendium

David Blehert, Emily Lankau

Pseudogymnoascus destructans is a psychrophilic (cold-loving) fungus that causes white-nose syndrome (WNS), an emerging disease of North American bats that has caused unprecedented population declines. The fungus is believed to have been introduced to North America from Europe or Asia (where it is present but does not cause significant mortality), but the full extent of its native range is unknown. The route of introduction is also unknown. In North America, hibernating bats become infected with P. destructans when body temperature decreases during winter torpor into the range permissive for growth of this fungus. Infected bats may develop visible fungal growth on the nose or wings, awaken more frequently from torpor, and experience a cascade of physiologic changes that result in weight loss, dehydration, electrolyte imbalances, and death. P. destructans persists in the environments of underground bat hibernation sites (hibernacula) and is believed to spread primarily by natural movements of infected bats. The first evidence of WNS in North America is from a photograph of a hibernating bat taken during winter of 2005-2006 in a hibernaculum near Albany, New York. P. destructans subsequently spread rapidly from the northeastern United States throughout much of the eastern portions of the United States and Canada, and most recently (as of May 2017) was detected in Washington State. It has killed millions of bats, threatening some species with regional extirpation and putting at risk the valuable environmental services that bats provide by eating harmful insects.

Population trends and distribution of Common Murre Uria aalge colonies in Washington, 1996-2015

Released May 01, 2017 00:00 EST

2017, Marine Ornithology (45) 95-102

Susan M Thomas, James Lyons

Periodic assessments of population trends and changes in spatial distribution are valuable for managing marine birds and their breeding habitats, particularly when evaluating long-term response to threats such as oil spills, predation pressure, and changing ocean conditions. We evaluated recent trends in abundance and distribution of the Common Murre Uria aalge within Copalis, Quillayute Needles, and Flattery Rocks National Wildlife Refuges, which include all murre colonies in Washington except one, off-refuge, on Tatoosh Island. In 1996-2001 and 2010-2015, aerial photographic surveys were conducted during the incubation phase (mid-June through mid-July) each year. Using images from film (1996-2001) and digital (2010-2015) cameras that included all parts of each colony, we manually counted murres. We estimated population trend as annual percent change in whole-colony counts using an overdispersed Poisson regression model. Overall, numbers of murres counted at breeding colonies in Washington increased by 8.8% per year (95% CI 3.0%-14.9%) during 1996–2015. The overall statewide increase was driven by an increase at colonies in northern Washington of approximately 11% per year (95% CI 4.5%-17.8%). Despite an increasing trend, abundance remains lower than levels in the late 1970s, and the spatial distribution has changed. Colonies in southern Washington - where murres were historically the most abundant - are no longer active, or only minimally so, whereas colonies in the north - which were rarely active in the early 1970s - are now the largest. There was high variability in spatial distribution among years, a pattern that indicates a need for coordinated monitoring and movement studies throughout the California Current System to understand dispersal and colonization. Our results indicate that future management of refuge islands could protect both current and historic colony locations, given the patterns of colony dynamics and the uncertainty about long-term effects of a changing ocean ecosystem and predation pressure on the status of murres.

Spatiotemporal variability of snow depletion curves derived from SNODAS for the conterminous United States, 2004-2013

Released May 01, 2017 00:00 EST

2017, Journal of the American Water Resources Association

Jessica Driscoll, Lauren E. Hay, Andrew R. Bock

Assessment of water resources at a national scale is critical for understanding their vulnerability to future change in policy and climate. Representation of the spatiotemporal variability in snowmelt processes in continental-scale hydrologic models is critical for assessment of water resource response to continued climate change. Continental-extent hydrologic models such as the U.S. Geological Survey National Hydrologic Model (NHM) represent snowmelt processes through the application of snow depletion curves (SDCs). SDCs relate normalized snow water equivalent (SWE) to normalized snow covered area (SCA) over a snowmelt season for a given modeling unit. SDCs were derived using output from the operational Snow Data Assimilation System (SNODAS) snow model as daily 1-km gridded SWE over the conterminous United States. Daily SNODAS output were aggregated to a predefined watershed-scale geospatial fabric and used to also calculate SCA from October 1, 2004 to September 30, 2013. The spatiotemporal variability in SNODAS output at the watershed scale was evaluated through the spatial distribution of the median and standard deviation for the time period. Representative SDCs for each watershed-scale modeling unit over the conterminous United States (n = 54,104) were selected using a consistent methodology and used to create categories of snowmelt based on SDC shape. The relation of SDC categories to the topographic and climatic variables allow for national-scale categorization of snowmelt processes.

Guidelines for preparation of State water-use estimates for 2015

Released May 01, 2017 00:00 EST

2017, Open-File Report 2017-1029

The U.S. Geological Survey (USGS) has estimated the use of water in the United States at 5-year intervals since 1950. This report describes the water-use categories and data elements used for the national water-use compilation conducted as part of the USGS National Water-Use Science Project. The report identifies sources of water-use information, provides standard methods and techniques for estimating water use at the county level, and outlines steps for preparing documentation for the United States, the District of Columbia, Puerto Rico, and the U.S. Virgin Islands.

As part of this USGS program to document water use on a national scale, estimates of water withdrawals for the categories of public supply, self-supplied domestic, industrial, irrigation, and thermoelectric power are prepared for each county in each State, District, or territory by using the guidelines in this report. County estimates of water withdrawals for aquaculture, livestock, and mining are prepared for each State by using a county-based national model, although water-use programs in each State or Water Science Center have the option of producing independent county estimates of water withdrawals for these categories. Estimates of water withdrawals and consumptive use for thermoelectric power will be aggregated to the county level for each State by the national project; additionally, irrigation consumptive use at the county level will also be provided, although study chiefs in each State have the option of producing independent county estimates of water withdrawals and consumptive use for these categories.

Estimates of deliveries of water from public supplies for domestic use by county also will be prepared for each State. As a result, total domestic water use can be determined for each State by combining self-supplied domestic withdrawals and public-supplied domestic deliveries. Fresh groundwater and surface-water estimates will be prepared for all categories of use, and saline groundwater and surface-water estimates by county will be prepared for the categories of public supply, industrial, mining, and thermoelectric power. Power production for thermoelectric power and irrigated acres by irrigation system type will be compiled. If data are available, reclaimed-wastewater use will be compiled for the public-supply, industrial, mining, thermoelectric-power, and irrigation categories.

Optional water-use categories are commercial, hydroelectric power, and wastewater treatment. Optional data elements are public-supply deliveries to commercial, industrial, and thermoelectric-power users; consumptive use (for categories other than thermoelectric power and irrigation); irrigation conveyance loss; and number of facilities. Aggregation of water-use data by stream basin (eight-digit hydrologic unit code) and principal aquifers also is optional.

Water-use data compiled by the States will be stored in the USGS Aggregate Water-Use Data System (AWUDS). This database is a comprehensive aggregated database designed to store mandatory and optional data elements. AWUDS contains several routines that can be used for quality assurance and quality control of the data, and AWUDS produces tables of water-use data from the previous compilations.

Mercury and methylmercury concentrations and litterfall mass in autumn litterfall samples collected at selected National Atmospheric Deposition Program sites in 2007-2009 and 2012-2015

Released May 01, 2017 00:00 EST

2017, Dataset

Martin R. Risch

Mercury (Hg) is a persistent environmental contaminant and can accumulate and concentrate in food webs as methylmercury (MeHg), presenting a health risk to humans and wildlife. Multiyear monitoring and modeling studies have shown that atmospheric Hg in litterfall is an important form of Hg deposition to forests. Annual litterfall consists primarily of leaves with some amounts of needles, twigs bark, flowers, seeds, fruits, and nuts. Atmospheric Hg accumulates in leaves and reaches an annual maximum concentration at autumn leaf drop. This data set is derived from autumn litterfall collected at 30 selected National Atmospheric Deposition Program (NADP) Mercury Deposition Network (MDN) sites in deciduous and mixed deciduous-coniferous forests from 16 states in the eastern United States during 2007-2009 and 2012-2015. The NADP administered litterfall collection at the MDN sites. The U.S. Geological Survey (USGS) distributed sets of passive litterfall sample collectors to MDN site operators for systematic retrieval of samples during the 8 to 16 weeks of autumn leaf drop each year at each site. Samples were processed and analyzed at the USGS Mercury Research Laboratory where concentrations of Hg and MeHg and litterfall dry mass and sample moisture were determined. All sites did not have data for all years. Most sites had four Hg concentrations per year and a few sites had less than or more than four Hg concentrations in specific years. MeHg concentrations were determined in one composite sample per site in 2007 and 2012-2015. Litterfall mass was determined from 4 to 8 samples per site per year. Seven annual groups of data were compiled into this dataset. More information is available from the NADP at

Geologic map of the northeast flank of Mauna Loa volcano, Island of Hawai'i, Hawaii

Released May 01, 2017 00:00 EST

2017, Scientific Investigations Map 2932-A

Frank A. Trusdell, John P. Lockwood


Mauna Loa, the largest volcano on Earth, has erupted 33 times since written descriptions became available in 1832. Some eruptions were preceded by only brief seismic unrest, while others followed several months to a year of increased seismicity.

The majority of the eruptions of Mauna Loa began in the summit area (>12,000-ft elevation; Lockwood and Lipman, 1987); yet the Northeast Rift Zone (NERZ) was the source of eight flank eruptions since 1843 (table 1). This zone extends from the 13,680-ft-high summit towards Hilo (population ~60,000), the second largest city in the State of Hawaii. Although most of the source vents are farther than 30 km away, the 1880 flow from one of the vents extends into Hilo, nearly reaching Hilo Bay. The city is built entirely on flows erupted from the NERZ, most older than that erupted in 1843.

Once underway, Mauna Loa's eruptions can produce lava flows that reach the sea in less than 24 hours, severing roads and utilities in their path. For example, lava flows erupted from the Southwest Rift Zone (SWRZ) in 1950 advanced at an average rate of 9.3 km per hour, and all three lobes reached the ocean within approximately 24 hours (Finch and Macdonald, 1953). The flows near the eruptive vents must have traveled even faster.

In terms of eruption frequency, pre-eruption warning, and rapid flow emplacement, Mauna Loa poses an enormous volcanic-hazard threat to the Island of Hawai‘i. By documenting past activity and by alerting the public and local government officials of our findings, we can anticipate the volcanic hazards and substantially mitigate the risks associated with an eruption of this massive edifice.

From the geologic record, we can deduce several generalized facts about the geologic history of the NERZ. The middle to the uppermost section of the rift zone were more active in the past 4,000 years than the lower part, perhaps due to buttressing of the lower east rift zone by Mauna Kea and Kīlauea volcanoes. The historical flows that erupted on the north flank of the rift zone, which is more vulnerable to inundation, advanced toward Hilo. Lockwood (1990) noted that the vents of historical activity are migrating to the south. The volcano appears to have a self-regulating mechanism that evenly distributes long-term activity across its flanks. The geologic record also supports this notion; the time prior to the historical period (Age Group 1, orange units, pre-A.D. 1843–1,000 yr B.P.; see map sheet 2) is dominated by activity on the south side of the NERZ.

The NERZ trends N. 65° E. and is about 40 km long and 2–4 km wide, narrowing at the summit caldera. It becomes diffuse (6–7 km wide) at its down-rift terminus, at the approximately 3,400-ft elevation. Its constructional crest is marked by low spatter ramparts and by spatter cones as high as 60 m. Subparallel eruptive fissures and ground cracks cut vent deposits and flows in and near the rift crest. Lava typically flows to the north, east, or south, depending on vent location relative to the rift crest.

Encompassing 1,140 km2 of the northeast flank of Mauna Loa from the 10,880-ft elevation to sea level, the map covers the area from Hilo to Volcano on the east and includes the rift zone from Puu Ulaula quadrangle in the southwest to Hilo in the northeast. The distribution of 105 eruptive units (flows)—separated into 15 age groups ranging from more than 30,000 years B.P. to A.D. 1984—are shown, as well as the relations of volcanic and surficial sedimentary deposits. This map incorporates previously reported work published in generalized small-scale maps (Lockwood and Lipman, 1987; Buchanan-Banks, 1993; Lockwood, 1995; and Wolfe and Morris, 1996).

Ecological regime shift drives declining growth rates of sea turtles throughout the West Atlantic

Released April 29, 2017 00:00 EST

2017, Global Change Biology

Karen A. Bjorndal, Alan B. Bolten, Milani Chaloupka, Vincent S. Saba, Cláudio Bellini, Maria A.G. Marcovaldi, Armando J.B. Santos, Luis Felipe Wurdig Bortolon, Anne B. Meylan, Peter A. Meylan, Jennifer Gray, Robert Hardy, Beth Brost, Michael Bresette, Jonathan C. Gorham, Stephen Connett, Barbara Van Sciver Crouchley, Mike Dawson, Deborah Hayes, Carlos E. Diez, Robert P. van Dam, Sue Willis, Mabel Nava, Kristen M. Hart, Michael S. Cherkiss, Andrew Crowder, Clayton Pollock, Zandy Hillis-Starr, Fernando A. Muñoz Tenería, Roberto Herrera-Pavón, Vanessa Labrada-Martagón, Armando Lorences, Ana Negrete-Philippe, Margaret M. Lamont, Allen M. Foley, Rhonda Bailey, Raymond R. Carthy, Russell Scarpino, Erin McMichael, Jane A. Provancha, Annabelle Brooks, Adriana Jardim, Milagros López-Mendilaharsu, Daniel González-Paredes, Andrés Estrades, Alejandro Fallabrino, Gustavo Martínez-Souza, Gabriela M. Vélez-Rubio, Ralf H. Boulon Jr., Jaime Collazo, Robert Wershoven, Vicente Guzmán Hernández, Thomas B. Stringell, Amdeep Sanghera, Peter B. Richardson, Annette C. Broderick, Quinton Phillips, Marta C. Calosso, John A.B. Claydon, Tasha L. Metz, Amanda L. Gordon, Andre M. Landry Jr., Donna J. Shaver, Janice Blumenthal, Lucy Collyer, Brendan J. Godley, Andrew McGowan, Matthew J. Witt, Cathi L. Campbell, Cynthia J. Lagueux, Thomas L. Bethel, Lory Kenyon

Somatic growth is an integrated, individual-based response to environmental conditions, especially in ectotherms. Growth dynamics of large, mobile animals are particularly useful as bio-indicators of environmental change at regional scales. We assembled growth rate data from throughout the West Atlantic for green turtles, Chelonia mydas, which are long-lived, highly migratory, primarily herbivorous mega-consumers that may migrate over hundreds to thousands of kilometers. Our dataset, the largest ever compiled for sea turtles, has 9690 growth increments from 30 sites from Bermuda to Uruguay from 1973 to 2015. Using generalized additive mixed models, we evaluated covariates that could affect growth rates; body size, diet, and year have significant effects on growth. Growth increases in early years until 1999, then declines by 26% to 2015. The temporal (year) effect is of particular interest because two carnivorous species of sea turtles – hawksbills, Eretmochelys imbricata, and loggerheads, Caretta caretta – exhibited similar significant declines in growth rates starting in 1997 in the West Atlantic, based on previous studies. These synchronous declines in productivity among three sea turtle species across a trophic spectrum provide strong evidence that an ecological regime shift (ERS) in the Atlantic is driving growth dynamics. The ERS resulted from a synergy of the 1997/1998 El Niño Southern Oscillation (ENSO) – the strongest on record – combined with an unprecedented warming rate over the last two to three decades. Further support is provided by the strong correlations between annualized mean growth rates of green turtles and both sea surface temperatures (SST) in the West Atlantic for years of declining growth rates (r = -0.94) and the Multivariate ENSO Index (MEI) for all years (r = 0.74). Granger-causality analysis also supports the latter finding. We discuss multiple stressors that could reinforce and prolong the effect of the ERS. This study demonstrates the importance of region-wide collaborations.