Publications recently added to the Pubs Warehouse

(500 records max)

A method for addressing differences in concentrations of fipronil and three degradates obtained by two different laboratory methods

Released July 21, 2017 09:00 EST

2017, Open-File Report 2017-1056

Charles G. Crawford, Jeffrey D. Martin

In October 2012, the U.S. Geological Survey (USGS) began measuring the concentration of the pesticide fipronil and three of its degradates (desulfinylfipronil, fipronil sulfide, and fipronil sulfone) by a new laboratory method using direct aqueous-injection liquid chromatography tandem mass spectrometry (DAI LC–MS/MS). This method replaced the previous method—in use since 2002—that used gas chromatography/mass spectrometry (GC/MS). The performance of the two methods is not comparable for fipronil and the three degradates. Concentrations of these four chemical compounds determined by the DAI LC–MS/MS method are substantially lower than the GC/MS method. A method was developed to correct for the difference in concentrations obtained by the two laboratory methods based on a methods comparison field study done in 2012. Environmental and field matrix spike samples to be analyzed by both methods from 48 stream sites from across the United States were sampled approximately three times each for this study. These data were used to develop a relation between the two laboratory methods for each compound using regression analysis. The relations were used to calibrate data obtained by the older method to the new method in order to remove any biases attributable to differences in the methods. The coefficients of the equations obtained from the regressions were used to calibrate over 16,600 observations of fipronil, as well as the three degradates determined by the GC/MS method retrieved from the USGS National Water Information System. The calibrated values were then compared to over 7,800 observations of fipronil and to the three degradates determined by the DAI LC–MS/MS method also retrieved from the National Water Information System. The original and calibrated values from the GC/MS method, along with measures of uncertainty in the calibrated values and the original values from the DAI LC–MS/MS method, are provided in an accompanying data release.

Value of information analysis as a decision support tool for biosecurity: Chapter 15

Released July 21, 2017 00:00 EST

2017, Book chapter, Invasive species: Risk assessment and management

Michael C. Runge, Tracy Rout, Daniel Spring, Terry Walshe

This chapter demonstrates the economic concept of ‘value of information’(VOI), and how biosecurity managers can use VOI analysis to decide whether or not to reduce uncertainty by collecting additional information through monitoring, experimentation, or some other form of research. We first explore how some uncertainties may be scientifically interesting to resolve, but ultimately irrelevant to decision-making. We then develop a prototype model where a manager must choose between eradication or containment of an infestation. Eradication is more cost-effective for smaller infestations, but once the extent reaches a certain size it becomes more cost-effective to contain. When choosing between eradication and containment, how much does knowing the extent of the infestation more exactly improve the outcome of the decision? We calculate the expected value of perfect information (EVPI) about the extent, which provides an upper limit for the value of reducing uncertainty. We then illustrate the approach using the example of red imported fire ant management in south-east Queensland. We calculate the EVPI for three different uncertain variables: the extent of the infestation, the sensitivity (true positive rate) of remote sensing, and the efficacy of baiting.

Natural infections with Pigeon Paramyxovirus-1: Pathologic changes in Eurasian collared-doves (Streptopelia decaocto) and rock pigeons (Columba livia) in the USA: Data

Released July 21, 2017 00:00 EST

2017, Dataset

Marcos Isidoro-Ayza, Julia S. Lankton, Susan N. Knowles, Hon S. Ip, C. LeAnn White

We reviewed pathological findings and to a lesser extent epidemiological data from 70 free-ranging columbiforms naturally infected with Pigeon paramyxovirus-1 (PPMV-1) from 25 different PPMV-1 mortality events in columbiforms in the USA. In a subset of 17 birds from 10 of the studied outbreaks, we carried out immunohistochemistry targeting PPMV-1 nucleoprotein to determine the tissue distribution of the virus.

Territory and nest site selection patterns by Grasshopper Sparrows in southeastern Arizona

Released July 21, 2017 00:00 EST

2017, The Condor (119) 469-483

Janet M. Ruth, Susan Skagen

Grassland bird populations are showing some of the greatest rates of decline of any North American birds, prompting measures to protect and improve important habitat. We assessed how vegetation structure and composition, habitat features often targeted for management, affected territory and nest site selection by Grasshopper Sparrows (Ammodramus savannarum ammolegus) in southeastern Arizona. To identify features important to males establishing territories, we compared vegetation characteristics of known territories and random samples on 2 sites over 5 years. We examined habitat selection patterns of females by comparing characteristics of nest sites with territories over 3 years. Males selected territories in areas of sparser vegetation structure and more tall shrubs (>2 m) than random plots on the site with low shrub densities. Males did not select territories based on the proportion of exotic grasses. Females generally located nest sites in areas with lower small shrub (1–2 m tall) densities than territories overall when possible and preferentially selected native grasses for nest construction. Whether habitat selection was apparent depended upon the range of vegetation structure that was available. We identified an upper threshold above which grass structure seemed to be too high and dense for Grasshopper Sparrows. Our results suggest that some management that reduces vegetative structure may benefit this species in desert grasslands at the nest and territory scale. However, we did not assess initial male habitat selection at a broader landscape scale where their selection patterns may be different and could be influenced by vegetation density and structure outside the range of values sampled in this study.

Runtimes for tests of array-processing speed: Factorial tests using C and C++ under Windows and Linux

Released July 21, 2017 00:00 EST

2017, Dataset

David I. Donato

The dataset is provided as a .zip archive containing two .csv data files. These two data files contain the results of a series of timing runs made with a suite of 28 C test programs and 20 C++ test programs using three different computers and two operating systems (Windows and Linux). All 48 test programs carry out processing of two-dimensional arrays. One of the files, "C_CppTimeTestsAllRecords.csv", contains three replicated times for each of 960 combinations of factor levels that potentially might have affected the time required to process two-dimensional arrays. The other file, "C_CppTimeTestsAverages.csv", contains the average of the three replicated times for each of the 960 combinations of factor levels. Both files have the same column headers and data formats, and the meaning of the data fields (columns) is the same in both files, with one exception. The exception is that the file for all records contains actual runtimes (in seconds) in the "ProcTime" field, whereas the other file contains averaged runtimes in the "ProcTime" field.

Avian abundance and oak mistletoe survey data from the Willamette Valley, Oregon, 2013-2015

Released July 21, 2017 00:00 EST

2017, Dataset

Kyle R. Pritchard, Joan Hagar, David C. Shaw

This dataset includes two spreadsheets: The "Avian_abundance_oak_mistletoe_bird_data" spreadsheet contains data regarding Oregon White Oak tree (Quercus garryana) measurements such as height, diameter and crown volume along with microhabitat data including number of mistletoe infections, number of cavities, amount of dead wood, amount of loose/missing bark, amount of poison oak, amount of bole cracks, and presence of woodpecker sign, bark-beetle sign, and fungal fruiting bodies. The "Avian_abundance_oak_mistletoe_surveys_data" spreadsheet contains bird survey observations including data, time, temperature, precipitation, bird species observations, age/sex, and behavioral observations.

Coastal geophysical data collected in 2016 nearshore Cape Canaveral, Florida

Released July 21, 2017 00:00 EST

2017, Dataset

Noreen A. Buster, Jennifer L. Miselis, Shinobu Okano, Paul T. Gayes, Jenna C. Hill

Geophysical data including multibeam bathymetry and backscatter, side scan sonar, and chirp subbottom were collected by Coastal Carolina University (CCU) Center for Marine and Wetland Studies (CMWS), Conway, South Carolina, in June 2016 in collaboration with the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) in the nearshore environment of Cape Canaveral, Florida. The goal of the effort was to broadly characterize the geology of the shelf to identify spatial linkages with previously measured coastal change and bathymetric variability (https://pubs.er.usgs.gov/publication/ofr20151180). This USGS Data Release includes the: 1) processed elevation point data (xyz) and digital elevation model (DEM), 2) processed images of backscatter and side scan sonar (SSS), and 3) chirp subbottom profile data (segy and jpg). For further information regarding data collection and/or processing please see the metadata associated with this data release.

Carrying capacity in a heterogeneous environment with habitat connectivity

Released July 21, 2017 00:00 EST

2017, Dataset

Bo Zhang, Alex Kula, K.M.L. Mack, Lu Zhai, Arrix L. Ryce, Wei-Ming Ni, Don DeAngelis, J.D. Van Dyken

The data are population sizes of yeast Saccharaomyces cerevisiae growth in laboratory cultures over a period of several days with different levels of growth inhibitor cycloheximide.

Bathymetric survey of Rock Run Rookery Lake, Will County, Illinois.

Released July 21, 2017 00:00 EST

2017, Dataset

James J. Duncker, Jennifer B. Sharpe

The bathymetric data set was collected in Rock Run on Dec. 10, 2015 by USGS ILWSC staff Clayton Bosch and Louis Pappas. The bathymetric data were collected with an RD Instruments 1200 kHz ADCP (S/N 8617) and Trimble Ag 162 GPS mounted on the M/V La Moine. A temporary reference point (TRP) was established on the north side of the footbridge over the connecting channel to the Des Plaines River. The mean water surface elevation (504.97 feet, WGS 84) during the survey was established from a temporary reference point whose elevation was later established by GPS survey. The measured depths were then converted to a lake bed elevation. The location and depth data were compiled into a bathymetry dataset (Rock Run Bathymetry Data.csv). The dataset was imported as a shapefile into ArcMap (ArcGIS software 10.3.1). A shape file of lake boundary elevation was developed based on imagery from September 16, 2015 (U.S. Department of Agriculture Farm Services Agency National Agriculture Imagery Program (NAIP)) (point data can be found in Rock Run Lake Boundary.csv). This shape file was merged with the elevation shape file to enforced the lake and island edges in the final bathymetry. This elevation shape file was then contoured using Geostatistical Analyst/Deterministic methods/Radial Basis Functions with Completely Regularized Spline (defaults were used except Sector type: 4 Sectors, Angle: 42, Major semiaxis: 800, Minor semiaxis: 500). The raster was then exported to a GeoTIFF file with a resulting raster cell size of 1 foot.

Status and Trends of Adult Lost River (Deltistes luxatus) and Shortnose (Chasmistes brevirostris) Sucker Populations in Upper Klamath Lake, Oregon, 2015

Released July 21, 2017 00:00 EST

2017, Open-File Report 2017-1059

David A. Hewitt, Eric C. Janney, Brian S. Hayes, Alta C. Harris

Executive Summary

Data from a long-term capture-recapture program were used to assess the status and dynamics of populations of two long-lived, federally endangered catostomids in Upper Klamath Lake, Oregon. Lost River suckers (LRS; Deltistes luxatus) and shortnose suckers (SNS; Chasmistes brevirostris) have been captured and tagged with passive integrated transponder (PIT) tags during their spawning migrations in each year since 1995. In addition, beginning in 2005, individuals that had been previously PIT-tagged were re-encountered on remote underwater antennas deployed throughout sucker spawning areas. Captures and remote encounters during the spawning season in spring 2015 were incorporated into capture-recapture analyses of population dynamics. Cormack-Jolly-Seber (CJS) open population capture-recapture models were used to estimate annual survival probabilities, and a reverse-time analog of the CJS model was used to estimate recruitment of new individuals into the spawning populations. In addition, data on the size composition of captured fish were examined to provide corroborating evidence of recruitment. Separate analyses were done for each species and also for each subpopulation of LRS. Shortnose suckers and one subpopulation of LRS migrate into tributary rivers to spawn, whereas the other LRS subpopulation spawns at groundwater upwelling areas along the eastern shoreline of the lake. Characteristics of the spawning migrations in 2015, such as the effects of temperature on the timing of the migrations, were similar to past years.

Capture-recapture analyses for the LRS subpopulation that spawns at the shoreline areas included encounter histories for 13,617 individuals, and analyses for the subpopulation that spawns in the rivers included 39,321 encounter histories. With a few exceptions, the survival of males and females in both subpopulations was high (greater than or equal to 0.86) between 1999 and 2013. Survival was notably lower for males from the rivers in 2000, 2006, and 2012. Survival probabilities were lower for males from the shoreline areas in 2002. Between 2001 and 2014, the abundance of males in the lakeshore spawning subpopulation decreased by at least 59 percent and the abundance of females decreased by at least 53 percent. By combining information from capture-recapture models and size composition data, we concluded that the abundance of both sexes in the river spawning subpopulation of LRS likely has decreased at rates similar to the rates for the lakeshore spawning subpopulation between 2002 and 2014. Capture-recapture analyses for SNS included encounter histories for 20,981 individuals. Most annual survival estimates between 2005 and 2009 were high (greater than 0.88), but both sexes of SNS experienced lower and more variable survival in 2001–04 and 2010–13. The best-case scenario for SNS, based on capture-recapture recruitment modeling, indicates that the abundance of males in the spawning population decreased by 77 percent and the abundance of females decreased by 74 percent between 2001 and 2014. Decreases in abundance for both sexes likely are greater than these estimates indicate. Despite relatively high survival in most years, we conclude that both species have experienced substantial decreases in the abundance of spawning adults because losses from mortality have not been balanced by recruitment of new individuals. The status of the endangered sucker populations in Upper Klamath Lake remains worrisome, especially for SNS.

Efficient processing of two-dimensional arrays with C or C++

Released July 20, 2017 11:30 EST

2017, Techniques and Methods 7-E1

David I. Donato

Because fast and efficient serial processing of raster-graphic images and other two-dimensional arrays is a requirement in land-change modeling and other applications, the effects of 10 factors on the runtimes for processing two-dimensional arrays with C and C++ are evaluated in a comparative factorial study. This study’s factors include the choice among three C or C++ source-code techniques for array processing; the choice of Microsoft Windows 7 or a Linux operating system; the choice of 4-byte or 8-byte array elements and indexes; and the choice of 32-bit or 64-bit memory addressing. This study demonstrates how programmer choices can reduce runtimes by 75 percent or more, even after compiler optimizations. Ten points of practical advice for faster processing of two-dimensional arrays are offered to C and C++ programmers. Further study and the development of a C and C++ software test suite are recommended.

Key words: array processing, C, C++, compiler, computational speed, land-change modeling, raster-graphic image, two-dimensional array, software efficiency

Evolutionary dynamics of an expressed MHC class IIβ locus in the Ranidae (Anura) uncovered by genome walking and high-throughput amplicon sequencing

Released July 20, 2017 00:00 EST

2017, Developmental and Comparative Immunology (76) 177-188

Kevin P. Mulder, Maria Cortazar-Chinarro, D. James Harris, Angelica Crottini, Evan H. Campbell Grant, Robert C. Fleischer, Anna E. Savage

The Major Histocompatibility Complex (MHC) is a genomic region encoding immune loci that are important and frequently used markers in studies of adaptive genetic variation and disease resistance. Given the primary role of infectious diseases in contributing to global amphibian declines, we characterized the hypervariable exon 2 and flanking introns of the MHC Class IIβ chain for 17 species of frogs in the Ranidae, a speciose and cosmopolitan family facing widespread pathogen infections and declines. We find high levels of genetic variation concentrated in the Peptide Binding Region (PBR) of the exon. Ten codons are under positive selection, nine of which are located in the mammal-defined PBR. We hypothesize that the tenth codon (residue 21) is an amphibian-specific PBR site that may be important in disease resistance. Trans-species and trans-generic polymorphisms are evident from exon-based genealogies, and co-phylogenetic analyses between intron, exon and mitochondrial based reconstructions reveal incongruent topologies, likely due to different locus histories. We developed two sets of barcoded adapters that reliably amplify a single and likely functional locus in all screened species using both 454 and Illumina based sequencing methods. These primers provide a resource for multiplexing and directly sequencing hundreds of samples in a single sequencing run, avoiding the labour and chimeric sequences associated with cloning, and enabling MHC population genetic analyses. Although the primers are currently limited to the 17 species we tested, these sequences and protocols provide a useful genetic resource and can serve as a starting point for future disease, adaptation and conservation studies across a range of anuran taxa.

Recovery data for surface water, groundwater and lab reagent samples analyzed by the USGS National Water Quality Laboratory schedule 2437, water years 2013-15

Released July 20, 2017 00:00 EST

2017, Dataset

Megan E. Shoda, Lisa H. Nowell, Laura M. Bexfield, Mark W. Sandstrom, Wesley W. Stone

Analytical recovery is the concentration of an analyte measured in a water-quality sample expressed as a percentage of the known concentration added to the sample (Mueller and others, 2015). Analytical recovery (hereafter referred to as “recovery”) can be used to understand method bias and variability and to assess the temporal changes in a method over time (Martin and others, 2009). This data set includes two tables: one table of field spike recovery data and one table of lab reagent spike recovery data. The table of field spike recovery data includes results from paired environmental and spike samples collected by the National Water Quality Program, National Water-Quality Assessment (NAWQA) Project in surface water and groundwater. These samples were collected as part of the NAWQA Project’s National Water Quality Network: Rivers and Streams assessment, Regional Stream Quality Assessment studies and in multiple groundwater networks following standard practices (Mueller and others, 1997).  This table includes environmental and spike water-quality sample data stored in the USGS National Water Information System (NWIS) database (https://dx.doi.org/10.5066/F7P55KJN). Concentrations of pesticides in spike samples, while stored in the NWIS database, are not publically available. The calculation of recovery based on these field sample data is outlined in Mueller and others (2015). Lab reagent spikes are pesticide-free reagent water spiked with a known concentration of pesticide. Lab reagent spikes are prepared in the lab and their recovery can be directly measured. The table of lab reagent spike data contains quality control sample information stored in the USGS National Water Quality Laboratory (NWQL) database. Both tables include fields for data-quality indicators that are described in the data processing steps of this metadata file. These tables were developed in order to support a USGS Scientific Investigations Report with the working title “Considerations for the Preparation of Pesticide Data Analyzed with National Water Quality Laboratory Schedule 2437” 
      
Martin, J.D., Stone, W.W, Wydoski, D.S., and Sandstrom, M.W., 2009, Adjustment of pesticide concentrations for temporal changes in analytical recovery, 1992–2006: U.S. Geological Survey Scientific Investigations Report 2009–5189, 23 p. plus appendixes.

Mueller, D.K., Schertz, T.L., Martin, J.D., and Sandstrom, M.W., 2015, Design, analysis, and interpretation of field quality-control data for water-sampling projects: U.S. Geological Survey Techniques and Methods, book 4, chap. C4, 54 p., https://dx.doi.org/10.3133/tm4C4.

Mueller, D.K., Martin, J.D. and Lopes, T.J., 1997, Quality-Control Design for Surface-Water Sampling in the National Water-Quality Assessment Program: U.S. Geological Survey Open-File Report 97-223, 8 p. plus appendixes.

National assessment of shoreline change: A GIS compilation of updated vector shorelines and associated shoreline change data for the Southeast Atlantic coast

Released July 20, 2017 00:00 EST

2017, Dataset

Meredith Kratzmann, Emily Himmelstoss, E. Robert Thieler

Sandy ocean beaches in the United States are popular tourist and recreational destinations and constitute some of the most valuable real estate in the country.

The boundary between land and water along the coastline is often the location of concentrated residential and commercial development and is frequently exposed to a range of natural hazards, which include flooding, storm effects, and coastal erosion.  In response, the U.S. Geological Survey (USGS) is conducting a national assessment of coastal change hazards.  One component of this research effort, the National Assessment of Shoreline Change Project (http://coastal.er.usgs.gov/shoreline-change/), documents changes in shoreline position as a proxy for coastal change. Shoreline position is an easily understood feature representing the historical location of a beach position through time. All data can be viewed on the National Assessment of Coastal Change Hazards Portal at https://marine.usgs.gov/coastalchangehazardsportal/

Water-quality models to assess algal community dynamics, water quality, and fish habitat suitability for two agricultural land-use dominated lakes in Minnesota, 2014

Released July 20, 2017 00:00 EST

2017, Scientific Investigations Report 2017-5056

Erik A. Smith, Richard L. Kiesling, Jeffrey R. Ziegeweid

Fish habitat can degrade in many lakes due to summer blue-green algal blooms. Predictive models are needed to better manage and mitigate loss of fish habitat due to these changes. The U.S. Geological Survey (USGS), in cooperation with the Minnesota Department of Natural Resources, developed predictive water-quality models for two agricultural land-use dominated lakes in Minnesota—Madison Lake and Pearl Lake, which are part of Minnesota’s sentinel lakes monitoring program—to assess algal community dynamics, water quality, and fish habitat suitability of these two lakes under recent (2014) meteorological conditions. The interaction of basin processes to these two lakes, through the delivery of nutrient loads, were simulated using CE-QUAL-W2, a carbon-based, laterally averaged, two-dimensional water-quality model that predicts distribution of temperature and oxygen from interactions between nutrient cycling, primary production, and trophic dynamics.

The CE-QUAL-W2 models successfully predicted water temperature and dissolved oxygen on the basis of the two metrics of mean absolute error and root mean square error. For Madison Lake, the mean absolute error and root mean square error were 0.53 and 0.68 degree Celsius, respectively, for the vertical temperature profile comparisons; for Pearl Lake, the mean absolute error and root mean square error were 0.71 and 0.95 degree Celsius, respectively, for the vertical temperature profile comparisons. Temperature and dissolved oxygen were key metrics for calibration targets. These calibrated lake models also simulated algal community dynamics and water quality. The model simulations presented potential explanations for persistently large total phosphorus concentrations in Madison Lake, key differences in nutrient concentrations between these lakes, and summer blue-green algal bloom persistence.

Fish habitat suitability simulations for cool-water and warm-water fish indicated that, in general, both lakes contained a large proportion of good-growth habitat and a sustained period of optimal growth habitat in the summer, without any periods of lethal oxythermal habitat. For Madison and Pearl Lakes, examples of important cool-water fish, particularly game fish, include northern pike (Esox lucius), walleye (Sander vitreus), and black crappie (Pomoxis nigromaculatus); examples of important warm-water fish include bluegill (Lepomis macrochirus), largemouth bass (Micropterus salmoides), and smallmouth bass (Micropterus dolomieu). Sensitivity analyses were completed to understand lake response effects through the use of controlled departures on certain calibrated model parameters and input nutrient loads. These sensitivity analyses also operated as land-use change scenarios because alterations in agricultural practices, for example, could potentially increase or decrease nutrient loads.

The saltiest springs in the Sierra Nevada, California

Released July 20, 2017 00:00 EST

2017, Scientific Investigations Report 2017-5053

James G. Moore, Michael F. Diggles, William C. Evans, Karin Klemic

The five saltiest springs in the Sierra Nevada in California are found between 38.5° and 38.8° N. latitude, on the South Fork American River; on Caples Creek, a tributary of the Silver Fork American River; and on the North Fork Mokelumne River. The springs issue from Cretaceous granitic rocks in the bottoms of these major canyons, between 1,200- and 2,200-m elevation. All of these springs were well known to Native Americans, who excavated meter-sized basins in the granitic rock, within which they produced salt by evaporation near at least four of the five spring sites. The spring waters are dominated by Cl, Na, and Ca; are enriched relative to seawater in Ca, Li, and As; and are depleted in SO4, Mg, and K. Tritium analyses indicate that the spring waters have had little interaction with rainfall since about 1954. The waters are apparently an old groundwater of meteoric origin that resided at depth before moving up along fractures to the surface of the exhumed granitic rocks. However, along the way these waters incorporated salts from depth, the origin of which could have been either from marine sedimentary rocks intruded by the granitic magmas or from fluid inclusions in the granitic rocks. Prolonged storage at depth fostered water-rock interactions that undoubtedly modified the fluid compositions.

Status and understanding of groundwater quality in the North San Francisco Bay Shallow Aquifer study unit, 2012; California GAMA Priority Basin Project

Released July 20, 2017 00:00 EST

2017, Scientific Investigations Report 2017-5051

George L. Bennett

Groundwater quality in the North San Francisco Bay Shallow Aquifer study unit (NSF-SA) was investigated as part of the Priority Basin Project of the California Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is in Marin, Mendocino, Napa, Solano, and Sonoma Counties and included two physiographic study areas: the Valleys and Plains area and the surrounding Highlands area. The NSF-SA focused on groundwater resources used for domestic drinking water supply, which generally correspond to shallower parts of aquifer systems than that of groundwater resources used for public drinking water supply in the same area. The assessments characterized the quality of untreated groundwater, not the quality of drinking water.

This study included three components: (1) a status assessment, which characterized the status of the quality of the groundwater resources used for domestic supply for 2012; (2) an understanding assessment, which evaluated the natural and human factors potentially affecting water quality in those resources; and (3) a comparison between the groundwater resources used for domestic supply and those used for public supply.

The status assessment was based on data collected from 71 sites sampled by the U.S. Geological Survey for the GAMA Priority Basin Project in 2012. To provide context, concentrations of constituents measured in groundwater were compared to U.S. Environmental Protection Agency (EPA) and California State Water Resources Control Board Division of Drinking Water regulatory and non-regulatory benchmarks for drinking-water quality. The status assessment used a grid-based method to estimate the proportion of the groundwater resources that has concentrations of water-quality constituents approaching or above benchmark concentrations. This method provides statistically unbiased results at the study-area scale and permits comparisons to other GAMA Priority Basin Project study areas.

In the NSF-SA study unit as a whole, inorganic constituents with human-health benchmarks were detected at high relative concentrations (RCs) in 27 percent of the shallow aquifer system, and inorganic constituents with secondary maximum contaminant levels (SMCL) were detected at high RCs in 24 percent of the system. The inorganic constituents detected at high RCs were arsenic, boron, fluoride, manganese, nitrate, iron, sulfate, and total dissolved solids (TDS). Organic constituents with human-health benchmarks were detected at high RCs in 1 percent of the shallow aquifer system. Of the 148 organic constituents analyzed, 30 constituents were detected, although only 1, chloroform, had a detection frequency greater than 10 percent.

Natural and anthropogenic factors that could affect the groundwater quality were evaluated by using results from statistical testing of associations between constituent concentrations and values of potential explanatory factors. Groundwater age class (modern, mixed, or pre-modern), redox class (oxic or anoxic), aquifer lithology class (metamorphic, sedimentary, or volcanic), and dissolved oxygen concentrations were the explanatory factors that explained distribution patterns of most of the inorganic constituents best. Groundwater classified primarily as pre-modern or mixed in age was associated with higher concentrations of arsenic and fluoride than waters classified as modern. Anoxic or mixed redox conditions were associated with higher concentrations of boron, fluoride, and manganese. Similar patterns of association with explanatory variables were seen for inorganic constituents with aesthetic-based benchmarks detected at high concentrations. Nitrate and perchlorate had higher concentrations in oxic than in the anoxic redox class and were positively correlated with urban land use.

The NSF-SA water-quality results were compared to those of the GAMA North San Francisco Bay Public-Supply Aquifer study unit (NSF-PA). The NSF-PA was sampled in 2004 and covers much of the same area as the NSF-SA, but focused on the deeper public-supply aquifer system. The comparison of the NSF-PA to the NSF-SA showed that there were more differences between the Valleys and Plains study areas of the two study units than between the Highlands study areas of the two study units. As expected from the shallower depth of wells, the NSF-SA Valleys and Plains study area had a lesser proportion of pre-modern age groundwater and greater proportion of modern age groundwater than the NSF-PA Valleys and Plains study area. In contrast, well depths and groundwater ages were not significantly different between the two Highlands study areas. Arsenic, manganese, and nitrate were present at high RCs, and perchlorate was detected in greater proportions of the NSF-SA Valleys and Plains study area than the NSF-PA Valleys and Plains study area.

Evidence of Asian carp spawning upstream of a key choke point in the Mississippi River

Released July 19, 2017 00:00 EST

2017, North American Journal of Fisheries Management (37) 903-919

James H. Larson, Brent C. Knights, Sunnie McCalla, Emy Monroe, Maren T. Tuttle-Lau, Duane C. Chapman, Amy E. George, Jon Vallazza, Jon Amberg

Bighead Carp Hypophthalmichthys nobilis, Silver Carp H. molitrix, and Grass Carp Ctenopharyngodon idella(collectively termed “Asian carp”) were introduced into North America during the 1960s and 1970s and have become established in the lower Mississippi River basin. Previously published evidence for spawning of these species in the upper Mississippi River has been limited to an area just downstream of Dam 22 (near Saverton, Missouri). In 2013 and 2014, we sampled ichthyoplankton at 18 locations in the upper Mississippi River main stem from Dam 9 through Dam 19 and in four tributaries of the Mississippi River (Des Moines, Skunk, Iowa, and Wisconsin rivers). We identified eggs and larvae by using morphological techniques and then used genetic tools to confirm species identity. The spawning events we observed often included more than one species of Asian carp and in a few cases included eggs that must have been derived from more than one upstream spawning event. The upstream extent of genetically confirmed Grass Carp ichthyoplankton was the Wisconsin River, while Bighead Carp and Silver Carp ichthyoplankton were observed in Pool 16. In all these cases, ichthyoplankton likely drifted downstream for several hours prior to collection. Higher water velocities (and, to a lesser extent, higher temperatures) were associated with an increased likelihood of observing eggs or larvae, although the temperature range we encountered was mostly above 17°C. Several major spawning events were detected in 2013, but no major spawning events were observed in 2014. The area between Dam 15 and Dam 19 appears to be the upstream edge of spawning activity for both Silver Carp and Bighead Carp, suggesting that this area could be a focal point for management efforts designed to limit further upstream movement of these species..

Carrying capacity in a heterogeneous environment with habitat connectivity

Released July 19, 2017 00:00 EST

2017, Ecology Letters

Bo Zhang, Alex Kula, Keenan M.L. Mack, Lu Zhai, Arrix L. Ryce, Wei-Ming Ni, Don DeAngelis, J. David Van Dyken

A large body of theory predicts that populations diffusing in heterogeneous environments reach higher total size than if non-diffusing, and, paradoxically, higher size than in a corresponding homogeneous environment. However, this theory and its assumptions have not been rigorously tested. Here, we extended previous theory to include exploitable resources, proving qualitatively novel results, which we tested experimentally using spatially diffusing laboratory populations of yeast. Consistent with previous theory, we predicted and experimentally observed that spatial diffusion increased total equilibrium population abundance in heterogeneous environments, with the effect size depending on the relationship between r and K. Refuting previous theory, however, we discovered that homogeneously distributed resources support higher total carrying capacity than heterogeneously distributed resources, even with species diffusion. Our results provide rigorous experimental tests of new and old theory, demonstrating how the traditional notion of carrying capacity is ambiguous for populations diffusing in spatially heterogeneous environments.

Inundation, vegetation, and sediment effects on litter decomposition in Pacific Coast tidal marshes

Released July 19, 2017 00:00 EST

2017, Ecosystems

Christopher Janousek, Kevin J. Buffington, Glenn R. Guntenspergen, Karen M. Thorne, Bruce D. Dugger, John Takekawa

The cycling and sequestration of carbon are important ecosystem functions of estuarine wetlands that may be affected by climate change. We conducted experiments across a latitudinal and climate gradient of tidal marshes in the northeast Pacific to evaluate the effects of climate- and vegetation-related factors on litter decomposition. We manipulated tidal exposure and litter type in experimental mesocosms at two sites and used variation across marsh landscapes at seven sites to test for relationships between decomposition and marsh elevation, soil temperature, vegetation composition, litter quality, and sediment organic content. A greater than tenfold increase in manipulated tidal inundation resulted in small increases in decomposition of roots and rhizomes of two species, but no significant change in decay rates of shoots of three other species. In contrast, across the latitudinal gradient, decomposition rates of Salicornia pacifica litter were greater in high marsh than in low marsh. Rates were not correlated with sediment temperature or organic content, but were associated with plant assemblage structure including above-ground cover, species composition, and species richness. Decomposition rates also varied by litter type; at two sites in the Pacific Northwest, the grasses Deschampsia cespitosa and Distichlis spicata decomposed more slowly than the forb S. pacifica. Our data suggest that elevation gradients and vegetation structure in tidal marshes both affect rates of litter decay, potentially leading to complex spatial patterns in sediment carbon dynamics. Climate change may thus have direct effects on rates of decomposition through increased inundation from sea-level rise and indirect effects through changing plant community composition.

Higher sensitivity and lower specificity in post-fire mortality model validation of 11 western US tree species

Released July 19, 2017 00:00 EST

2017, International Journal of Wildland Fire (26) 444-454

Jeffrey M. Kane, Phillip J. van Mantgem, Laura Lalemand, MaryBeth Keifer

Managers require accurate models to predict post-fire tree mortality to plan prescribed fire treatments and examine their effectiveness. Here we assess the performance of a common post-fire tree mortality model with an independent dataset of 11 tree species from 13 National Park Service units in the western USA. Overall model discrimination was generally strong, but performance varied considerably among species and sites. The model tended to have higher sensitivity (proportion of correctly classified dead trees) and lower specificity (proportion of correctly classified live trees) for many species, indicating an overestimation of mortality. Variation in model accuracy (percentage of live and dead trees correctly classified) among species was not related to sample size or percentage observed mortality. However, we observed a positive relationship between specificity and a species-specific bark thickness multiplier, indicating that overestimation was more common in thin-barked species. Accuracy was also quite low for thinner bark classes (<1 cm) for many species, leading to poorer model performance. Our results indicate that a common post-fire mortality model generally performs well across a range of species and sites; however, some thin-barked species and size classes would benefit from further refinement to improve model specificity.

Seroprevalence of Baylisascaris procyonis infection among humans, Santa Barbara County, California, USA, 2014–2016

Released July 19, 2017 00:00 EST

2017, Emerging Infectious Diseases (23) 1397-1399

Sara B. Weinstein, Camille M. Lake, Holly M. Chastain, David Fisk, Sukwan Handali, Philip L. Kahn, Susan P. Montgomery, Patricia P. Wilkins, Armand M. Kuris, Kevin D. Lafferty

Baylisascaris procyonis (raccoon roundworm) infection is common in raccoons and can cause devastating pathology in other animals, including humans. Limited information is available on the frequency of asymptomatic human infection. We tested 150 adults from California, USA, for B. procyonis antibodies; 11 were seropositive, suggesting that subclinical infection does occur.

Trends and drivers of fire activity vary across California aridland ecosystems

Released July 19, 2017 00:00 EST

2017, Journal of Arid Environments (144) 110-122

Alexandra D. Syphard, Jon E. Keeley, John T. Abatzoglou

Fire activity has increased in western US aridland ecosystems due to increased human-caused ignitions and the expansion of flammable exotic grasses. Because many desert plants are not adapted to fire, increased fire activity may have long-lasting ecological impacts on native vegetation and the wildlife that depend on it. Given the heterogeneity across aridland ecosystems, it is important to understand how trends and drivers of fire vary, so management can be customized accordingly. We examined historical trends and quantified the relative importance of and interactions among multiple drivers of fire patterns across five aridland ecoregions in southeastern California from 1970 to 2010. Fire frequency increased across all ecoregions for the first couple decades, and declined or plateaued since the 1990s; but area burned continued to increase in some regions. The relative importance of anthropogenic and biophysical drivers varied across ecoregions, with both direct and indirect influences on fire. Anthropogenic variables were equally important as biophysical variables, but some contributed indirectly, presumably via their influence on annual grass distribution and abundance. Grass burned disproportionately more than other cover types, suggesting that addressing exotics may be the key to fire management and conservation in much of the area.

Observations of indirect filial cannibalism in response to nest failure of Black-crowned Night-Herons (Nycticorax nycticorax)

Released July 19, 2017 00:00 EST

2017, Wilson Journal of Ornithology (129) 390-394

Brianne E. Brussee, Peter S. Coates, Ian Dwight, Laura G. Young

During 2011, four separate instances of indirect filial cannibalism, whereby adults consumed their young that died from unknown causes, were observed using video-monitoring techniques in a nesting colony of Black-crowned Night-Herons (Nycticorax nycticorax) on Alcatraz Island. Though they were not observed actively killing their young, in all four observations adult Black-crowned Night-Herons consumed their young following death (i.e., indirect filial cannibalism). We could not determine cause of chick mortality, but parental neglect was likely a contributing factor in at least two instances. Indirect filial cannibalism is not commonly documented among birds, and understanding how cannibalism contributes to nest failure can help researchers better understand factors that limit nesting populations.

Tree species preferences of foraging songbirds during spring migration in floodplain forests of the Upper Mississippi River

Released July 19, 2017 00:00 EST

2017, American Midland Naturalist (177) 226-249

Eileen M. Kirsch, Mike J. Wellik

Floodplain forest of the Upper Mississippi River is important for songbirds during spring migration. However, the altered hydrology of this system and spread of reed canary grass (Phalaris arundinacea) and emerald ash borer (Agrilus planipennis) threaten tree diversity and long-term sustainability of this forest. We estimated tree preferences of songbirds during spring migration 2010–2013 to help guide management decisions that promote tree diversity and forest sustainability and to evaluate yearly variation in tree selection. We used the point center-quarter method to assess relative availability of tree species and tallied bird foraging observations on tree species as well as recording the phenophase of used trees on five 40 ha plots of contiguous floodplain forest between La Crosse, Wisconsin and New Albin, Iowa, from 15 April through 1 June. We quantified bird preferences by comparing proportional use of tree species by each bird species to estimates of tree species availability for all 4 y and for each year separately. Species that breed locally preferred silver maple (Acer saccharinum), which is dominant in this forest. The common transient migrant species and the suite of 17 transient wood warbler species preferred hackberry (Celtis occidentalis) and oaks (Quercus spp.), which are limited to higher elevations on the floodplain. We observed earlier leaf development the warm springs of 2010 and 2012 and later leaf development the cold springs of 2011 and 2013. Yellow-rumped Warbler (Setophaga coronata), American Redstart (S. ruticilla), Warbling Vireo (Vireo gilvus) and Baltimore Oriole (Icterus galbula), and the suite of transient migrant wood warblers spread their foraging efforts among tree species in colder springs and were more selective in warmer springs. All three of the important tree species are not regenerating well on the UMR and widespread die-off of silver maple is possible in 50 y without large scale management.

Alternative rupture-scaling relationships for subduction interface and other offshore environments

Released July 19, 2017 00:00 EST

2017, Bulletin of the Seismological Society of America (107) 1240-1253

Trevor Allen, Gavin Hayes

Alternative fault-rupture-scaling relationships are developed for Mw 7.1– 9.5 subduction interface earthquakes using a new database of consistently derived finitefault rupture models from teleseismic inversion. Scaling relationships are derived for rupture area, rupture length, rupture width, maximum slip, and average slip. These relationships apply width saturation for large-magnitude interface earthquakes (approximately Mw >8:6) for which the physical characteristics of subduction zones limit the depth extent of seismogenic rupture, and consequently, the down-dip limit of strong ground motion generation. On average, the down-dip rupture width for interface earthquakes saturates near 200 km (196 km on average). Accordingly, the reinterpretation of rupture-area scaling for subduction interface earthquakes through the use of a bilinear scaling model suggests that rupture asperity area is less well correlated with magnitude for earthquakes Mw >8:6. Consequently, the size of great-magnitude earthquakes appears to be more strongly controlled by the average slip across asperities. The sensitivity of the interface scaling relationships is evaluated against geographic region (or subduction zone) and average dip along the rupture interface to assess the need for correction factors. Although regional perturbations in fault-rupture scaling could be identified, statistical significance analyses suggest there is little rationale for implementing regional correction factors based on the limited number of interface rupture models available for each region. Fault-rupture-scaling relationships are also developed for intraslab (within the subducting slab), extensional outer-rise and offshore strike-slip environments. For these environments, the rupture width and area scaling properties yield smaller dimensions than interface ruptures for the corresponding magnitude. However, average and maximum slip metrics yield larger values than interface events. These observations reflect both the narrower fault widths and higher stress drops in these faulting environments. Although expressing significantly different rupture-scaling properties from earthquakes in subduction environments, the characteristics of offshore strike-slip earthquake ruptures compare similarly to commonly used rupture-scaling relationships for onshore strike-slip earthquakes.

Adjusting central and eastern North America ground-motion intensity measures between sites with different reference-rock site conditions

Released July 19, 2017 00:00 EST

2017, Bulletin of the Seismological Society of America (107) 132-148

David Boore, Kenneth W. Campbell

Adjustment factors are provided for converting ground‐motion intensity measures between central and eastern North America (CENA) sites with different reference‐rock site conditions (VS30=760, 2000, and 3000  m/s) for moment magnitudes ranging from 2 to 8, rupture distances ranging from 2 to 1200 km, Fourier amplitude spectra (FAS) for frequencies ranging from 0.01 to 100 Hz, response spectra for periods ranging from 0.01 to 10.0 s, peak ground acceleration, and peak ground velocity. The adjustment factors are given for a wide range of the site diminution parameters (κ0) for sites with VS30=760  m/s and for a κ0 of 0.006 s for two harder rock sites. Fourteen CENA velocity profiles with VS30 values within a factor of 1.1 of 760  m/s were used to derive average FAS amplification factors as a function of frequency, which were then used in simulations of peak ground‐motion parameters and response spectra to derive the adjustment factors. The amplification function differs from that used in western North America (e.g., Campbell and Boore, 2016) in having a peak near 9 Hz, due to the resonance of motions in the relatively thin low‐velocity material over hard rock that characterizes many CENA sites with VS30 near 760  m/s. We call these B/C sites, because this velocity marks the boundary between National Earthquake Hazards Reduction Program site classes B and C (Building Seismic Safety Council, 2004). The adjustments for short‐period motions are sensitive to the value of κ0, but there are very few if any determinations of κ0 for CENA B/C sites. For this reason, we determined κ0from multiple recordings at Pinyon Flat Observatory (PFO), California, which has a velocity‐depth profile similar to those of CENA B/C sites. The PFO and other results from the literature suggest that appropriate values of κ0 for CENA B/C sites are expected to lie between 0.01 and 0.03 s.

Land subsidence in the southwestern Mojave Desert, California, 1992–2009

Released July 19, 2017 00:00 EST

2017, Fact Sheet 2017-3053

Justin Brandt, Michelle Sneed

Groundwater has been the primary source of domestic, agricultural, and municipal water supplies in the southwestern Mojave Desert, California, since the early 1900s. Increased demands on water supplies have caused groundwater-level declines of more than 100 feet (ft) in some areas of this desert between the 1950s and the 1990s (Stamos and others, 2001; Sneed and others, 2003). These water-level declines have caused the aquifer system to compact, resulting in land subsidence. Differential land subsidence (subsidence occurring at different rates across the landscape) can alter surface drainage routes and damage surface and subsurface infrastructure. For example, fissuring across State Route 247 at Lucerne Lake has required repairs as has pipeline infrastructure near Troy Lake.

Land subsidence within the Mojave River and Morongo Groundwater Basins of the southwestern Mojave Desert has been evaluated using InSAR, ground-based measurements, geology, and analyses of water levels between 1992 and 2009 (years in which InSAR data were collected). The results of the analyses were published in three USGS reports— Sneed and others (2003), Stamos and others (2007), and Solt and Sneed (2014). Results from the latter two reports were integrated with results from other USGS/ MWA cooperative groundwater studies into the broader scoped USGS Mojave Groundwater Resources Web site (http://ca.water.usgs.gov/ mojave/). This fact sheet combines the detailed analyses from the three subsidence reports, distills them into a longer-term context, and provides an assessment of options for future monitoring.

Physical characteristics of the lower San Joaquin River, California, in relation to white sturgeon spawning habitat, 2011–14

Released July 19, 2017 00:00 EST

2017, Scientific Investigations Report 2017-5069

Mathieu D. Marineau, Scott A. Wright, Daniel R. Whealdon-Haught, Paul J. Kinzel

The U.S. Fish and Wildlife Service confirmed that white sturgeon (Acipenser transmontanus) recently spawned in the lower San Joaquin River, California. Decreases in the San Francisco Bay estuary white sturgeon population have led to an increased effort to understand their migration behavior and habitat preferences. The preferred spawning habitat of other white sturgeon (for example, those in the Columbia and Klamath Rivers) is thought to be areas that have high water velocity, deep pools, and coarse bed material. Coarse bed material (pebbles and cobbles), in particular, is important for the survival of white sturgeon eggs and larvae. Knowledge of the physical characteristics of the lower San Joaquin River can be used to preserve sturgeon spawning habitat and lead to management decisions that could help increase the San Francisco Bay estuary white sturgeon population.

Between 2011 and 2014, the U.S. Geological Survey, in cooperation with the U.S. Fish and Wildlife Service, assessed selected reaches and tributaries of the lower river in relation to sturgeon spawning habitat by (1) describing selected spawning reaches in terms of habitat-related physical characteristics (such as water depth and velocity, channel slope, and bed material) of the lower San Joaquin River between its confluences with the Stanislaus and Merced Rivers, (2) describing variations in these physical characteristics during wet and dry years, and (3) identifying potential reasons for these variations.

The lower San Joaquin River was divided into five study reaches. Although data were collected from all study reaches, three subreaches where the USFWS collected viable eggs at multiple sites in 2011–12 from Orestimba Creek to Sturgeon Bend were of special interest. Water depth and velocity were measured using two different approaches—channel cross sections and longitudinal profiles—and data were collected using an acoustic Doppler current profiler.

During the first year of data collection (water year 2011), runoff was greatest, and gaged streamflow, measured as discharge, peaked at 875 cubic meters per second in the lower San Joaquin River. Also during that year, water velocity was generally between 0.6 and 0.9 meters per second, and depth was typically between 2.5 and 4.5 meters, but water depth exceeded 6 meters in several pools. Water year 2011 was classified as a “wet” year. Later water years were classified as either “dry” (water year 2012) or “critical” (water years 2013 and 2014). During the drier years, water was shallower, and velocities were slower. The streambed aggraded in several areas during the study. At Sturgeon Bend, for example, which had the deepest pool measured in 2011 (maximum depth was 14 meters), about 8 meters of sediment was deposited by 2014.

The bed of the lower San Joaquin River was predominately sand, except in areas downstream from the mouth of Del Puerto Creek. A large amount of sand, gravel, and cobble was deposited at the mouth of Del Puerto Creek, and in the 9.5 kilometers downstream from the mouth of Del Puerto Creek, we encountered several gravel bars and patches of gravel-size (8–64 millimeters) bed material. Del Puerto and Orestimba Creeks drain from the Coast Ranges on the west side of the river. Only small quantities of gravel-size bed material were observed in the reach downstream from Orestimba Creek, indicating Orestimba Creek does not deliver much coarse sediment to the lower San Joaquin River. Del Puerto Creek appeared to be the primary source of gravels suitable for white sturgeon spawning in the lower San Joaquin River, and thus, it is important for the long-term spawning success of sturgeon in the San Joaquin River.

Biological and ecological science for Montana—The Treasure State

Released July 19, 2017 00:00 EST

2017, Fact Sheet 2017-3052

U.S. Geological Survey

Montana is rich in minerals, energy, and soils, as well as prairies, forests, mountains, rivers, lakes, fish, and wildlife. Many enterprises that drive the economy are based on natural resources, including tourism, hunting, fishing, agriculture, and energy development. The outdoor-recreation economy alone supports 64,000 Montana jobs and generates nearly \$6 billion each year in economic activity.

Preliminary hydrogeologic assessment near the boundary of the Antelope Valley and El Mirage Valley groundwater basins, California

Released July 19, 2017 00:00 EST

2017, Scientific Investigations Report 2017-5065

Christina L. Stamos, Allen H. Christensen, Victoria Langenheim

The increasing demands on groundwater for water supply in desert areas in California and the western United States have resulted in the need to better understand groundwater sources, availability, and sustainability. This is true for a 650-square-mile area that encompasses the Antelope Valley, El Mirage Valley, and Upper Mojave River Valley groundwater basins, about 50 miles northeast of Los Angeles, California, in the western part of the Mojave Desert. These basins have been adjudicated to ensure that groundwater rights are allocated according to legal judgments. In an effort to assess if the boundary between the Antelope Valley and El Mirage Valley groundwater basins could be better defined, the U.S. Geological Survey began a cooperative study in 2014 with the Mojave Water Agency to better understand the hydrogeology in the area and investigate potential controls on groundwater flow and availability, including basement topography.

Recharge is sporadic and primarily from small ephemeral washes and streams that originate in the San Gabriel Mountains to the south; estimates range from about 400 to 1,940 acre-feet per year. Lateral underflow from adjacent basins has been considered minor in previous studies; underflow from the Antelope Valley to the El Mirage Valley groundwater basin has been estimated to be between 100 and 1,900 acre-feet per year. Groundwater discharge is primarily from pumping, mostly by municipal supply wells. Between October 2013 and September 2014, the municipal pumpage in the Antelope Valley and El Mirage Valley groundwater basins was reported to be about 800 and 2,080 acre-feet, respectively.

This study was motivated by the results from a previously completed regional gravity study, which suggested a northeast-trending subsurface basement ridge and saddle approximately 3.5 miles west of the boundary between the Antelope Valley and El Mirage Valley groundwater basins that might influence groundwater flow. To better define potential basement structures that could affect groundwater flow between the groundwater basins in the study area, gravity data were collected using more closely spaced measurements in September 2014. Groundwater-level data was gathered and collected from March 2014 through March 2015 to determine depth to water and direction of groundwater flow. The gravity and groundwater-level data showed that the saturated thickness of the alluvium was about 2,000 feet thick to the east and about 130 feet thick above the northward-trending basement ridge near Llano, California. Although it was uncertain whether the basement ridge affects the groundwater system, a potential barrier to groundwater flow could be created if the water table fell below the altitude of the basement ridge, effectively causing the area to the west of the basement ridge to become hydraulically isolated from the area to the east. In addition, the direction of regional-groundwater flow likely will be influenced by future changes in the number and distribution of pumping wells and the thickness of the saturated alluvium from which water is withdrawn. Three-dimensional animations were created to help visualize the relation between the basins’ basement topography and the groundwater system in the area. Further studies that could help to more accurately define the basins and evaluate the groundwater-flow system include exploratory drilling of multi-depth monitoring wells; collection of depth-dependent water-quality samples; and linking together existing, but separate, groundwater-flow models from the Antelope Valley and El Mirage Valley groundwater basins into a single, calibrated groundwater-flow model.

Emplacement of Holocene silicic lava flows and domes at Newberry, South Sister, and Medicine Lake volcanoes, California and Oregon

Released July 19, 2017 00:00 EST

2017, Scientific Investigations Report 2017-5022-I

Jonathan H. Fink, Steven W. Anderson

This field guide for the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) Scientific Assembly 2017 focuses on Holocene glassy silicic lava flows and domes on three volcanoes in the Cascade Range in Oregon and California: Newberry, South Sister, and Medicine Lake volcanoes. Although obsidian-rich lava flows have been of interest to geologists, archaeologists, pumice miners, and rock hounds for more than a century, many of their emplacement characteristics had not been scientifically observed until two very recent eruptions in Chile. Even with the new observations, several eruptive processes discussed in this field trip guide can only be inferred from their final products. This makes for lively debates at outcrops, just as there have been in the literature for the past 30 years.

Of the three volcanoes discussed in this field guide, one (South Sister) lies along the main axis defined by major peaks of the Cascade Range, whereas the other two lie in extensional tectonic settings east of the axis. These two tectonic environments influence volcano morphology and the magmatic and volcanic processes that form silicic lava flows and domes. The geomorphic and textural features of glass-rich extrusions provide many clues about their emplacement and the magma bodies that fed them.

The scope of this field guide does not include a full geologic history or comprehensive explanation of hazards associated with a particular volcano or volcanic field. The geochemistry, petrology, tectonics, and eruption history of Newberry, South Sister, and Medicine Lake volcanic centers have been extensively studied and are discussed on other field excursions. Instead, we seek to explore the structural, textural, and geochemical evolution of well-preserved individual lava flows—the goal is to understand the geologic processes, rather than the development, of a specific volcano.

An investigation of soil-structure interaction effects observed at the MIT Green Building

Released July 19, 2017 00:00 EST

2016, Earthquake Spectra (32) 2425-2448

Ertugrul Taciroglu, Mehmet Celebi, S. Farid Ghahari, Fariba Abazarsa

The soil-foundation impedance function of the MIT Green Building is identified from its response signals recorded during an earthquake. Estimation of foundation impedance functions from seismic response signals is a challenging task, because: (1) the foundation input motions (FIMs) are not directly measurable, (2) the as-built properties of the super-structure are only approximately known, and (3) the soil-foundation impedance functions are inherently frequency-dependent. In the present study, aforementioned difficulties are circumvented by using, in succession, a blind modal identification (BMID) method, a simplified Timoshenko beam model (TBM), and a parametric updating of transfer functions (TFs). First, the flexible-base modal properties of the building are identified from response signals using the BMID method. Then, a flexible-base TBM is updated using the identified modal data. Finally, the frequency-dependent soil-foundation impedance function is estimated by minimizing the discrepancy between TFs (of pairs instrumented floors) that are (1) obtained experimentally from earthquake data and (2) analytically from the updated TBM. Using the fully identified flexible-base TBM, the FIMs as well as building responses at locations without instruments can be predicted, as demonstrated in the present study.

Helium as a tracer for fluids released from Juan de Fuca lithosphere beneath the Cascadia forearc

Released July 19, 2017 00:00 EST

2016, Geochemistry International (17) 2423-2449

Patricia A. McCrory, James E. Constantz, Andrew G. Hunt, James Luke Blair

The ratio between helium isotopes (3He/4He) provides an excellent geochemical tracer for investigating the sources of fluids sampled at the Earth's surface. 3He/4He values observed in 25 mineral springs and wells above the Cascadia forearc document a significant component of mantle-derived helium above Juan de Fuca lithosphere, as well as variability in 3He enrichment across the forearc. Sample sites arcward of the forearc mantle corner (FMC) generally yield significantly higher ratios (1.2-4.0 RA) than those seaward of the corner (0.03-0.7 RA). The highest ratios in the Cascadia forearc coincide with slab depths (40-45 km) where metamorphic dehydration of young oceanic lithosphere is expected to release significant fluid and where tectonic tremor occurs, whereas little fluid is expected to be released from the slab depths (25-30 km) beneath sites seaward of the corner.Tremor (considered a marker for high fluid pressure) and high RA values in the forearc are spatially correlated. The Cascadia tremor band is centered on its FMC, and we tentatively postulate that hydrated forearc mantle beneath Cascadia deflects a significant portion of slab-derived fluids updip along the subduction interface, to vent in the vicinity of its corner. Furthermore, high RA values within the tremor band just arcward of the FMC, suggest that the innermost mantle wedge is relatively permeable.Conceptual models require: (1) a deep fluid source as a medium to transport primordial 3He; (2) conduits through the lithosphere which serve to speed fluid ascent to the surface before significant dilution from radiogenic 4He can occur; and (3) near lithostatic fluid pressure to keep conduits open. Our spatial correlation between high RA values and tectonic tremor provides independent evidence that tremor is associated with deep fluids, and it further suggests that high pore pressures associated with tremor may serve to keep fractures open for 3He migration through ductile upper mantle and lower crust.

The 2014 Mw6.1 South Napa Earthquake: A unilateral rupture with shallow asperity and rapid afterslip

Released July 19, 2017 00:00 EST

2015, Seismological Research Letters (86) 344-354

Shengji Wei, Sylvain Barbot, Robert Graves, James J. Lienkaemper, Teng Wang, Kenneth W. Hudnut, Yuning Fu, Don Helmberger

The Mw6.1 South Napa earthquake occurred near Napa, California on August 24, 2014 (UTC), and was the largest inland earthquake in Northern California since the 1989 Mw6.9 Loma Prieta earthquake. The first report of the earthquake from the Northern California Earthquake Data Center (NCEDC) indicates a hypocentral depth of 11.0km with longitude and latitude of (122.3105°W, 38.217°N). Surface rupture was documented by field observations and Lidar imaging (Brooks et al. 2014; Hudnut et al. 2014; Brocher et al., 2015), with about 12 km of continuous rupture starting near the epicenter and extending to the northwest. The southern part of the rupture is relatively straight, but the strike changes by about 15° at the northern end over a 6-km segment. The peak dextral offset was observed near the Buhman residence with right-.‐lateral motion of 46 cm, near the location where the strike of fault begins to rotate clock-.‐wise (Hudnut et al., 2014). The earthquake was well recorded by the strong motion network operated by the NCEDC, the California Geological Survey and the U.S. Geological Survey (USGS). There are about 12 sites within an epicentral distance of 15km, with relatively good azimuthal coverage (Fig.1). The largest peak-ground-velocity (PGV) of nearly 100 cm/s was observed on station 1765, which is the closest station to the rupture and lies about 3 km east of the northern segment (Fig. 1). The ground deformation associated with the earthquake was also well recorded by the high-resolution COSMO-SkyMed satellite and Sentinel-1A satellite, providing independent static observations.

Laboratory constraints on models of earthquake recurrence

Released July 19, 2017 00:00 EST

2014, Journal of Geophysical Research (119) 8770-8791

Nicholas M. Beeler, Terry Tullis, Jenni Junger, Brian D. Kilgore, David L. Goldsby

In this study, rock friction ‘stick-slip’ experiments are used to develop constraints on models of earthquake recurrence. Constant-rate loading of bare rock surfaces in high quality experiments produces stick-slip recurrence that is periodic at least to second order. When the loading rate is varied, recurrence is approximately inversely proportional to loading rate. These laboratory events initiate due to a slip rate-dependent process that also determines the size of the stress drop [Dieterich, 1979; Ruina, 1983] and as a consequence, stress drop varies weakly but systematically with loading rate [e.g., Gu and Wong, 1991; Karner and Marone, 2000; McLaskey et al., 2012]. This is especially evident in experiments where the loading rate is changed by orders of magnitude, as is thought to be the loading condition of naturally occurring, small repeating earthquakes driven by afterslip, or low-frequency earthquakes loaded by episodic slip. As follows from the previous studies referred to above, experimentally observed stress drops are well described by a logarithmic dependence on recurrence interval that can be cast as a non-linear slip-predictable model. The fault’s rate dependence of strength is the key physical parameter. Additionally, even at constant loading rate the most reproducible laboratory recurrence is not exactly periodic, unlike existing friction recurrence models. We present example laboratory catalogs that document the variance and show that in large catalogs, even at constant loading rate, stress drop and recurrence co-vary systematically. The origin of this covariance is largely consistent with variability of the dependence of fault strength on slip rate. Laboratory catalogs show aspects of both slip and time predictability and successive stress drops are strongly correlated indicating a ‘memory’ of prior slip history that extends over at least one recurrence cycle.

Assessment of continuous oil and gas resources in the San Jorge Basin Province, Argentina, 2017

Released July 18, 2017 15:50 EST

2017, Fact Sheet 2017-3043

Christopher J. Schenk, Tracey J. Mercier, Sarah J. Hawkins, Marilyn E. Tennyson, Kristen R. Marra, Thomas M. Finn, Phuong A. Le, Michael E. Brownfield, Heidi M. Leathers-Miller, Cheryl A. Woodall

Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered, technically recoverable resources of 78 million barrels of oil and 8.9 trillion cubic feet of gas in the San Jorge Basin Province, Argentina.

Assessment of undiscovered oil and gas resources in the Cuyo Basin Province, Argentina, 2017

Released July 18, 2017 15:50 EST

2017, Fact Sheet 2017-3042

Christopher J. Schenk, Michael E. Brownfield, Marilyn E. Tennyson, Phuong A. Le, Tracey J. Mercier, Thomas M. Finn, Sarah J. Hawkins, Stephanie B. Gaswirth, Kristen R. Marra, Timothy R. Klett, Heidi M. Leathers-Miller, Cheryl A. Woodall

Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered, technically recoverable resources of 236 million barrels of oil and 112 billion cubic feet of associated gas in the Cuyo Basin Province, Argentina.

National assessment of shoreline change—Summary statistics for updated vector shorelines and associated shoreline change data for the Gulf of Mexico and Southeast Atlantic coasts

Released July 18, 2017 15:00 EST

2017, Open-File Report 2017-1015

Emily A. Himmelstoss, Meredith G. Kratzmann, E. Robert Thieler

Long-term rates of shoreline change for the Gulf of Mexico and Southeast Atlantic regions of the United States have been updated as part of the U.S. Geological Survey’s National Assessment of Shoreline Change project. Additional shoreline position data were used to compute rates where the previous rate-of-change assessment only included four shoreline positions at a given location. The long-term shoreline change rates also incorporate the proxy-datum bias correction to account for the unidirectional onshore bias of the proxy-based high water line shorelines relative to the datum-based mean high water shorelines. The calculation of uncertainty associated with the long-term average rates has also been updated to match refined methods used in other study regions of the National Assessment project. The average rates reported here have a reduced amount of uncertainty relative to those presented in the previous assessments for these two regions.

Storage filters upland suspended sediment signals delivered from watersheds

Released July 18, 2017 00:00 EST

2017, Geology (45) 151-154

James E. Pizzuto, Jeremy Keeler, Katherine Skalak, Diana Karwan

Climate change, tectonics, and humans create long- and short-term temporal variations in the supply of suspended sediment to rivers. These signals, generated in upland erosional areas, are filtered by alluvial storage before reaching the basin outlet. We quantified this filter using a random walk model driven by sediment budget data, a power-law distributed probability density function (PDF) to determine how long sediment remains stored, and a constant downstream drift velocity during transport of 157 km/yr. For 25 km of transport, few particles are stored, and the median travel time is 0.2 yr. For 1000 km of transport, nearly all particles are stored, and the median travel time is 2.5 m.y. Both travel-time distributions are power laws. The 1000 km travel-time distribution was then used to filter sinusoidal input signals with periods of 10 yr and 104 yr. The 10 yr signal is delayed by 12.5 times its input period, damped by a factor of 380, and is output as a power law. The 104 yr signal is delayed by 0.15 times its input period, damped by a factor of 3, and the output signal retains its sinusoidal input form (but with a power-law “tail”). Delivery time scales for these two signals are controlled by storage; in-channel transport time is insignificant, and low-frequency signals are transmitted with greater fidelity than high-frequency signals. These signal modifications are essential to consider when evaluating watershed restoration schemes designed to control sediment loading, and where source-area geomorphic processes are inferred from the geologic record.

Brackish groundwater and its potential to augment freshwater supplies

Released July 18, 2017 00:00 EST

2017, Fact Sheet 2017-3054

Jennifer S. Stanton, Kevin F. Dennehy

Secure, reliable, and sustainable water resources are fundamental to the Nation’s food production, energy independence, and ecological and human health and well-being. Indications are that at any given time, water resources are under stress in selected parts of the country. The large-scale development of groundwater resources has caused declines in the amount of groundwater in storage and declines in discharges to surface water bodies (Reilly and others, 2008). Water supply in some regions, particularly in arid and semiarid regions, is not adequate to meet demand, and severe drought intensifies the stresses affecting water resources (National Drought Mitigation Center, the U.S. Department of Agriculture, and the National Oceanic and Atmospheric Association, 2015). If these drought conditions continue, water shortages could adversely affect the human condition and threaten environmental flows necessary to maintain ecosystem health.

In support of the national census of water resources, the U.S. Geological Survey (USGS) completed the national brackish groundwater assessment to provide updated information about brackish groundwater as a potential resource to augment or replace freshwater supplies (Stanton and others, 2017). Study objectives were to consolidate available data into a comprehensive database of brackish groundwater resources in the United States and to produce a summary report highlighting the distribution, physical and chemical characteristics, and use of brackish groundwater resources. This assessment was authorized by section 9507 of the Omnibus Public Land Management Act of 2009 (42 U.S.C. 10367), passed by Congress in March 2009. Before this assessment, the last national brackish groundwater compilation was completed in the mid-1960s (Feth, 1965). Since that time, substantially more hydrologic and geochemical data have been collected and now can be used to improve the understanding of the Nation’s brackish groundwater resources.

Effect of NOAA satellite orbital drift on AVHRR-derived phenological metrics

Released July 18, 2017 00:00 EST

2017, International Journal of Applied Earth Observation and Geoinformation (62) 215-223

Lei Ji, Jesslyn Brown

The U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center routinely produces and distributes a remote sensing phenology (RSP) dataset derived from the Advanced Very High Resolution Radiometer (AVHRR) 1-km data compiled from a series of National Oceanic and Atmospheric Administration (NOAA) satellites (NOAA-11, −14, −16, −17, −18, and −19). Each NOAA satellite experienced orbital drift during its duty period, which influenced the AVHRR reflectance measurements. To understand the effect of the orbital drift on the AVHRR-derived RSP dataset, we analyzed the impact of solar zenith angle (SZA) on the RSP metrics in the conterminous United States (CONUS). The AVHRR weekly composites were used to calculate the growing-season median SZA at the pixel level for each year from 1989 to 2014. The results showed that the SZA increased towards the end of each NOAA satellite mission with the highest increasing rate occurring during NOAA-11 (1989–1994) and NOAA-14 (1995–2000) missions. The growing-season median SZA values (44°–60°) in 1992, 1993, 1994, 1999, and 2000 were substantially higher than those in other years (28°–40°). The high SZA in those years caused negative trends in the SZA time series, that were statistically significant (at α = 0.05 level) in 76.9% of the CONUS area. A pixel-based temporal correlation analysis showed that the phenological metrics and SZA were significantly correlated (at α = 0.05 level) in 4.1–20.4% of the CONUS area. After excluding the 5 years with high SZA (>40°) from the analysis, the temporal SZA trend was largely reduced, significantly affecting less than 2% of the study area. Additionally, significant correlation between the phenological metrics and SZA was observed in less than 7% of the study area. Our study concluded that the NOAA satellite orbital drift increased SZA, and in turn, influenced the phenological metrics. Elimination of the years with high median SZA reduced the influence of orbital drift on the RSP time series.

Oil Shale

Released July 18, 2017 00:00 EST

2017, Book chapter, Encyclopedia of Geochemistry

Justin E. Birdwell

Oil shales are fine-grained sedimentary rocks formed in many different depositional environments (terrestrial, lacustrine, marine) containing large quantities of thermally immature organic matter in the forms of kerogen and bitumen. If defined from an economic standpoint, a rock containing a sufficient concentration of oil-prone kerogen to generate economic quantities of synthetic crude oil upon heating to high temperatures (350–600 °C) in the absence of oxygen (pyrolysis) can be considered an oil shale.

Limiting the effects of earthquakes on gravitational-wave interferometers

Released July 18, 2017 00:00 EST

2017, Classical and Quantum Gravity (34)

Michael Coughlin, Paul Earle, Jan Harms, Sebastien Biscans, Christopher Buchanan, Eric Coughlin, Fred Donovan, Jeremy Fee, Hunter Gabbard, Michelle Guy, Nikhil Mukund, Matthew Perry

Ground-based gravitational wave interferometers such as the Laser Interferometer Gravitational-wave Observatory (LIGO) are susceptible to ground shaking from high-magnitude teleseismic events, which can interrupt their operation in science mode and significantly reduce their duty cycle. It can take several hours for a detector to stabilize enough to return to its nominal state for scientific observations. The down time can be reduced if advance warning of impending shaking is received and the impact is suppressed in the isolation system with the goal of maintaining stable operation even at the expense of increased instrumental noise. Here, we describe an early warning system for modern gravitational-wave observatories. The system relies on near real-time earthquake alerts provided by the U.S. Geological Survey (USGS) and the National Oceanic and Atmospheric Administration (NOAA). Preliminary low latency hypocenter and magnitude information is generally available in 5 to 20 min of a significant earthquake depending on its magnitude and location. The alerts are used to estimate arrival times and ground velocities at the gravitational-wave detectors. In general, 90% of the predictions for ground-motion amplitude are within a factor of 5 of measured values. The error in both arrival time and ground-motion prediction introduced by using preliminary, rather than final, hypocenter and magnitude information is minimal. By using a machine learning algorithm, we develop a prediction model that calculates the probability that a given earthquake will prevent a detector from taking data. Our initial results indicate that by using detector control configuration changes, we could prevent interruption of operation from 40 to 100 earthquake events in a 6-month time-period.

Case studies of riparian and watershed restoration in the southwestern United States—Principles, challenges, and successes

Released July 18, 2017 00:00 EST

2017, Open-File Report 2017-1091

Barbara E. Ralston, Daniel A. Sarr

Barbara E. Ralston, Daniel A. Sarr, editor(s)

Globally, rivers and streams are highly altered by impoundments, diversions, and stream channelization associated with agricultural and water delivery needs. Climate change imposes additional challenges by further reducing discharge, introducing variability in seasonal precipitation patterns, and increasing temperatures. Collectively, these changes in a river or stream’s annual hydrology affects surface and groundwater dynamics, fluvial processes, and the linked aquatic and riparian responses, particularly in arid regions. Recognizing the inherent ecosystem services that riparian and aquatic habitats provide, society increasingly supports restoring the functionality of riparian and aquatic ecosystems.

Given the wide range in types and scales of riparian impacts, approaches to riparian restoration can range from tactical, short-term, and site-specific efforts to strategic projects and long-term collaborations best pursued at the watershed scale. In the spirit of sharing information, the U.S. Geological Survey’s Grand Canyon Monitoring and Research Center convened a workshop June 23-25, 2015, in Flagstaff, Ariz. for practitioners in restoration science to share general principles, successful restoration practices, and discuss the challenges that face those practicing riparian restoration in the southwestern United States. Presenters from the Colorado River and the Rio Grande basins, offered their perspectives and experiences in restoration at the local, reach and watershed scale. Outcomes of the workshop include this Proceedings volume, which is composed of extended abstracts of most of the presentations given at the workshop, and recommendations or information needs identified by participants. The organization of the Proceedings follows a general progression from local scale restoration to river and watershed scale approaches, and finishes with restoration assessments and monitoring.

Lithofacies and sequence stratigraphic description of the upper part of the Avon Park Formation and the Arcadia Formation in U.S. Geological Survey G–2984 test corehole

Released July 18, 2017 00:00 EST

2017, Open-File Report 2017-1074

Kevin J. Cunningham, Edward Robinson

Rock core and sediment from U.S. Geological Survey test corehole G–2984 completed in 2011 in Broward County, Florida, provide an opportunity to improve the understanding of the lithostratigraphic, sequence stratigraphic, and hydrogeologic framework of the intermediate confining unit and Floridan aquifer system in southeastern Florida. A multidisciplinary approach including characterization of sequence stratigraphy, lithofacies, ichnology, foraminiferal paleontology, depositional environments, porosity, and permeability was used to describe the geologic samples from this test corehole. This information has produced a detailed characterization of the lithofacies and sequence stratigraphy of the upper part of the middle Eocene Avon Park Formation and Oligocene to middle Miocene Arcadia Formation. This enhancement of the knowledge of the sequence stratigraphic framework is especially important, because subaerial karst unconformities at the upper boundary of depositional cycles at various hierarchical scales are commonly associated with secondary porosity and enhanced permeability in the Floridan aquifer system.

Assessment of continuous oil and gas resources in the Perth Basin Province, Australia, 2017

Released July 17, 2017 15:25 EST

2017, Fact Sheet 2017-3039

Christopher J. Schenk, Marilyn E. Tennyson, Thomas M. Finn, Tracey J. Mercier, Sarah J. Hawkins, Stephanie B. Gaswirth, Kristen R. Marra, Timothy R. Klett, Phuong A. Le, Heidi M. Leathers-Miller, Cheryl A. Woodall

Using a geology-based assessment methodology, the U.S. Geological Survey assessed undiscovered, technically recoverable mean resources of 223 million barrels of oil and 14.5 trillion cubic feet of gas in the Perth Basin Province, Australia.

Summary of the analyses for recovery factors

Released July 17, 2017 13:30 EST

2017, Scientific Investigations Report 2017-5062-E

Mahendra K. Verma

Introduction

In order to determine the hydrocarbon potential of oil reservoirs within the U.S. sedimentary basins for which the carbon dioxide enhanced oil recovery (CO2-EOR) process has been considered suitable, the CO2 Prophet model was chosen by the U.S. Geological Survey (USGS) to be the primary source for estimating recovery-factor values for individual reservoirs. The choice was made because of the model’s reliability and the ease with which it can be used to assess a large number of reservoirs. The other two approaches—the empirical decline curve analysis (DCA) method and a review of published literature on CO2-EOR projects—were deployed to verify the results of the CO2 Prophet model. This chapter discusses the results from CO2 Prophet (chapter B, by Emil D. Attanasi, this report) and compares them with results from decline curve analysis (chapter C, by Hossein Jahediesfanjani) and those reported in the literature for selected reservoirs with adequate data for analyses (chapter D, by Ricardo A. Olea).

To estimate the technically recoverable hydrocarbon potential for oil reservoirs where CO2-EOR has been applied, two of the three approaches—CO2 Prophet modeling and DCA—do not include analysis of economic factors, while the third approach—review of published literature—implicitly includes economics. For selected reservoirs, DCA has provided estimates of the technically recoverable hydrocarbon volumes, which, in combination with calculated amounts of original oil in place (OOIP), helped establish incremental CO2-EOR recovery factors for individual reservoirs.

The review of published technical papers and reports has provided substantial information on recovery factors for 70 CO2-EOR projects that are either commercially profitable or classified as pilot tests. When comparing the results, it is important to bear in mind the differences and limitations of these three approaches.

Carbon dioxide enhanced oil recovery performance according to the literature

Released July 17, 2017 13:30 EST

2017, Scientific Investigations Report 2017-5062-D

Ricardo A. Olea

Introduction

The need to increase the efficiency of oil recovery and environmental concerns are bringing to prominence the use of carbon dioxide (CO2) as a tertiary recovery agent. Assessment of the impact of flooding with CO2 all eligible reservoirs in the United States not yet undergoing enhanced oil recovery (EOR) requires making the best possible use of the experience gained in 40 years of applications. Review of the publicly available literature has located relevant CO2-EOR information for 53 units (fields, reservoirs, pilot areas) in the United States and 17 abroad.

As the world simultaneously faces an increasing concentration of CO2 in the atmosphere and a higher demand for fossil fuels, the CO2-EOR process continues to gain popularity for its efficiency as a tertiary recovery agent and for the potential for having some CO2 trapped in the subsurface as an unintended consequence of the enhanced production (Advanced Resources International and Melzer Consulting, 2009). More extensive application of CO2-EOR worldwide, however, is not making it significantly easier to predict the exact outcome of the CO2 flooding in new reservoirs. The standard approach to examine and manage risks is to analyze the intended target by conducting laboratory work, running simulation models, and, finally, gaining field experience with a pilot test. This approach, though, is not always possible. For example, assessment of the potential of CO2-EOR at the national level in a vast country such as the United States requires making forecasts based on information already available.

Although many studies are proprietary, the published literature has provided reviews of CO2-EOR projects. Yet, there is always interest in updating reports and analyzing the information under new perspectives. Brock and Bryan (1989) described results obtained during the earlier days of CO2-EOR from 1972 to 1987. Most of the recovery predictions, however, were based on intended injections of 30 percent the size of the reservoir’s hydrocarbon pore volume (HCPV), and the predictions in most cases badly missed the actual recoveries because of the embryonic state of tertiary recovery in general and CO2 flooding in particular at the time. Brock and Bryan (1989), for example, reported for the Weber Sandstone in the Rangely oil field in Colorado, an expected recovery of 7.5 percent of the original oil in place (OOIP) after injecting a volume of CO2 equivalent to 30 percent of the HCPV, but Clark (2012) reported that after injecting a volume of CO2 equivalent to 46 percent of the HCPV, the actual recovery was 4.8 percent of the OOIP. Decades later, the numbers by Brock and Bryan (1989) continue to be cited as part of expanded reviews, such as the one by Kuuskraa and Koperna (2006). Other comprehensive reviews including recovery factors are those of Christensen and others (2001) and Lake and Walsh (2008). The Oil and Gas Journal (O&GJ) periodically reports on active CO2-EOR operations worldwide, but those releases do not include recovery factors. The monograph by Jarrell and others (2002) remains the most technically comprehensive publication on CO2 flooding, but it does not cover recovery factors either.

This chapter is a review of the literature found in a search for information about CO2-EOR. It has been prepared as part of a project by the U.S. Geological Survey (USGS) to assess the incremental oil production that would be technically feasible by CO2 flooding of all suitable oil reservoirs in the country not yet undergoing tertiary recovery.

Application of decline curve analysis to estimate recovery factors for carbon dioxide enhanced oil recovery

Released July 17, 2017 13:30 EST

2017, Scientific Investigations Report 2017-5062-C

Hossein Jahediesfanjani

Introduction

In the decline curve analysis (DCA) method of estimating recoverable hydrocarbon volumes, the analyst uses historical production data from a well, lease, group of wells (or pattern), or reservoir and plots production rates against time or cumu­lative production for the analysis. The DCA of an individual well is founded on the same basis as the fluid-flow principles that are used for pressure-transient analysis of a single well in a reservoir domain and therefore can provide scientifically reasonable and accurate results. However, when used for a group of wells, a lease, or a reservoir, the DCA becomes more of an empirical method. Plots from the DCA reflect the reservoir response to the oil withdrawal (or production) under the prevailing operating and reservoir conditions, and they continue to be good tools for estimating recoverable hydrocarbon volumes and future production rates. For predicting the total recov­erable hydrocarbon volume, the DCA results can help the analyst to evaluate the reservoir performance under any of the three phases of reservoir productive life—primary, secondary (waterflood), or tertiary (enhanced oil recovery) phases—so long as the historical production data are sufficient to establish decline trends at the end of the three phases.

Using CO2 Prophet to estimate recovery factors for carbon dioxide enhanced oil recovery

Released July 17, 2017 13:30 EST

2017, Scientific Investigations Report 2017-5062-B

Emil D. Attanasi

Introduction

The Oil and Gas Journal’s enhanced oil recovery (EOR) survey for 2014 (Koottungal, 2014) showed that gas injection is the most frequently applied method of EOR in the United States and that carbon dioxide (CO2 ) is the most commonly used injection fluid for miscible operations. The CO2-EOR process typically follows primary and secondary (waterflood) phases of oil reservoir development. The common objective of implementing a CO2-EOR program is to produce oil that remains after the economic limit of waterflood recovery is reached. Under conditions of miscibility or multicontact miscibility, the injected CO2 partitions between the gas and liquid CO2 phases, swells the oil, and reduces the viscosity of the residual oil so that the lighter fractions of the oil vaporize and mix with the CO2 gas phase (Teletzke and others, 2005). Miscibility occurs when the reservoir pressure is at least at the minimum miscibility pressure (MMP). The MMP depends, in turn, on oil composition, impurities of the CO2 injection stream, and reservoir temperature. At pressures below the MMP, component partitioning, oil swelling, and viscosity reduction occur, but the efficiency is increasingly reduced as the pressure falls farther below the MMP.

CO2-EOR processes are applied at the reservoir level, where a reservoir is defined as an underground formation containing an individual and separate pool of producible hydrocarbons that is confined by impermeable rock or water barriers and is characterized by a single natural pressure system. A field may consist of a single reservoir or multiple reservoirs that are not in communication but which may be associated with or related to a single structural or stratigraphic feature (U.S. Energy Information Administration [EIA], 2000).

The purpose of modeling the CO2-EOR process is discussed along with the potential CO2-EOR predictive models. The data demands of models and the scope of the assessments require tradeoffs between reservoir-specific data that can be assembled and simplifying assumptions that allow assignment of default values for some reservoir parameters. These issues are discussed in the context of the CO2 Prophet EOR model, and their resolution is demonstrated with the computation of recovery-factor estimates for CO2-EOR of 143 reservoirs in the Powder River Basin Province in southeastern Montana and northeastern Wyoming.

General introduction and recovery factors

Released July 17, 2017 13:30 EST

2017, Scientific Investigations Report 2017-5062-A

Mahendra K. Verma

Introduction

The U.S. Geological Survey (USGS) compared methods for estimating an incremental recovery factor (RF) for the carbon dioxide enhanced oil recovery (CO2-EOR) process involving the injection of CO2 into oil reservoirs. This chapter first provides some basic information on the RF, including its dependence on various reservoir and operational parameters, and then discusses the three development phases of oil recovery—primary, second­ary, and tertiary (EOR). It ends with a brief discussion of the three approaches for estimating recovery factors, which are detailed in subsequent chapters.

Three approaches for estimating recovery factors in carbon dioxide enhanced oil recovery

Released July 17, 2017 13:30 EST

2017, Scientific Investigations Report 2017-5062

Mahendra K. Verma, editor(s)

Preface

The Energy Independence and Security Act of 2007 authorized the U.S. Geological Survey (USGS) to conduct a national assessment of geologic storage resources for carbon dioxide (CO2) and requested the USGS to estimate the “potential volumes of oil and gas recoverable by injection and sequestration of industrial carbon dioxide in potential sequestration formations” (42 U.S.C. 17271(b)(4)). Geologic CO2 sequestration associated with enhanced oil recovery (EOR) using CO2 in existing hydrocarbon reservoirs has the potential to increase the U.S. hydrocarbon recoverable resource. The objective of this report is to provide detailed information on three approaches that can be used to calculate the incremental recovery factors for CO2-EOR. Therefore, the contents of this report could form an integral part of an assessment methodology that can be used to assess the sedimentary basins of the United States for the hydrocarbon recovery potential using CO2-EOR methods in conventional oil reservoirs.

Hydrologic Derivatives for Modeling and Analysis—A new global high-resolution database

Released July 17, 2017 12:10 EST

2017, Data Series 1053

Kristine L. Verdin

The U.S. Geological Survey has developed a new global high-resolution hydrologic derivative database. Loosely modeled on the HYDRO1k database, this new database, entitled Hydrologic Derivatives for Modeling and Analysis, provides comprehensive and consistent global coverage of topographically derived raster layers (digital elevation model data, flow direction, flow accumulation, slope, and compound topographic index) and vector layers (streams and catchment boundaries). The coverage of the data is global, and the underlying digital elevation model is a hybrid of three datasets: HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales), GMTED2010 (Global Multi-resolution Terrain Elevation Data 2010), and the SRTM (Shuttle Radar Topography Mission). For most of the globe south of 60°N., the raster resolution of the data is 3 arc-seconds, corresponding to the resolution of the SRTM. For the areas north of 60°N., the resolution is 7.5 arc-seconds (the highest resolution of the GMTED2010 dataset) except for Greenland, where the resolution is 30 arc-seconds. The streams and catchments are attributed with Pfafstetter codes, based on a hierarchical numbering system, that carry important topological information. This database is appropriate for use in continental-scale modeling efforts. The work described in this report was conducted by the U.S. Geological Survey in cooperation with the National Aeronautics and Space Administration Goddard Space Flight Center.

An empirical perspective for understanding climate change impacts in Switzerland

Released July 17, 2017 00:00 EST

2017, Regional Environmental Change

Paul Henne, Moritz Bigalke, Ulf Büntgen, Daniele Colombaroli, Marco Conedera, Urs Feller, David Frank, Jürg Fuhrer, Martin Grosjean, Oliver Heiri, Jürg Luterbacher, Adrien Mestrot, Andreas Rigling, Ole Rössler, Christian Rohr, This Rutishauser, Margit Schwikowski, Andreas Stampfli, Sönke Szidat, Jean-Paul Theurillat, Rolf Weingartner, Wolfgan Wilcke, Willy Tinner

Planning for the future requires a detailed understanding of how climate change affects a wide range of systems at spatial scales that are relevant to humans. Understanding of climate change impacts can be gained from observational and reconstruction approaches and from numerical models that apply existing knowledge to climate change scenarios. Although modeling approaches are prominent in climate change assessments, observations and reconstructions provide insights that cannot be derived from simulations alone, especially at local to regional scales where climate adaptation policies are implemented. Here, we review the wealth of understanding that emerged from observations and reconstructions of ongoing and past climate change impacts in Switzerland, with wider applicability in Europe. We draw examples from hydrological, alpine, forest, and agricultural systems, which are of paramount societal importance, and are projected to undergo important changes by the end of this century. For each system, we review existing model-based projections, present what is known from observations, and discuss how empirical evidence may help improve future projections. A particular focus is given to better understanding thresholds, tipping points and feedbacks that may operate on different time scales. Observational approaches provide the grounding in evidence that is needed to develop local to regional climate adaptation strategies. Our review demonstrates that observational approaches should ideally have a synergistic relationship with modeling in identifying inconsistencies in projections as well as avenues for improvement. They are critical for uncovering unexpected relationships between climate and agricultural, natural, and hydrological systems that will be important to society in the future.

Atypical feeding behavior of Long-tailed Ducks in the wake of a commercial fishing boat while clamming

Released July 17, 2017 00:00 EST

2017, Northeastern Naturalist (24) N19-N25

Matthew Perry, Peter C. Osenton, Timothy P. White

A foraging group of Clangula hyemalis (Long-tailed Duck) was observed on 10 February 2010 diving behind a commercial boat that was clamming near Monomoy Island, Nantucket Sound, MA. We used a shotgun to collect 9 of the ducks, and our analyses of gizzard and gullet (esophagus and proventriculus) revealed 37 food items in the gizzard and 16 in the gullet. Mollusca were the dominant food in the gizzard (49%), whereas Crustacea were dominant in the gullet (57%). Crustacea were the second most important food in the gizzard (38%), whereas Mollusca were the second most important food in the gullet (31%). Relatively high volumes of the Amphipoda Caprella sp. (skeleton shrimp) and the Decopoda Crangon septemspinosa (Sand Shrimp) were recorded in the gullet and gizzard. Ensis directus (Atlantic Jackknife Clam) formed the greatest volume of Mollusca in the gizzard (15%) and in the gullet (15%). Long-tailed Ducks had fed on this Bivalvia and several other species of Mollusca that had no shell or broken shell when consumed. Many of the food organisms were apparently dislodged and some damaged by the clamming operation creating an opportunistic feeding strategy for the Long-tailed Ducks.

2017 One‐year seismic‐hazard forecast for the central and eastern United States from induced and natural earthquakes

Released July 17, 2017 00:00 EST

2017, Seismological Research Letters

Mark D. Petersen, Charles Mueller, Morgan P. Moschetti, Susan M. Hoover, Allison Shumway, Daniel E. McNamara, Robert Williams, Andrea L. Llenos, William L Ellsworth, Justin L. Rubinstein, Arthur F. McGarr, Kenneth S. Rukstales

We produce a one‐year 2017 seismic‐hazard forecast for the central and eastern United States from induced and natural earthquakes that updates the 2016 one‐year forecast; this map is intended to provide information to the public and to facilitate the development of induced seismicity forecasting models, methods, and data. The 2017 hazard model applies the same methodology and input logic tree as the 2016 forecast, but with an updated earthquake catalog. We also evaluate the 2016 seismic‐hazard forecast to improve future assessments. The 2016 forecast indicated high seismic hazard (greater than 1% probability of potentially damaging ground shaking in one year) in five focus areas: Oklahoma–Kansas, the Raton basin (Colorado/New Mexico border), north Texas, north Arkansas, and the New Madrid Seismic Zone. During 2016, several damaging induced earthquakes occurred in Oklahoma within the highest hazard region of the 2016 forecast; all of the 21 moment magnitude (M) ≥4 and 3 M≥5 earthquakes occurred within the highest hazard area in the 2016 forecast. Outside the Oklahoma–Kansas focus area, two earthquakes with M≥4 occurred near Trinidad, Colorado (in the Raton basin focus area), but no earthquakes with M≥2.7 were observed in the north Texas or north Arkansas focus areas. Several observations of damaging ground‐shaking levels were also recorded in the highest hazard region of Oklahoma. The 2017 forecasted seismic rates are lower in regions of induced activity due to lower rates of earthquakes in 2016 compared with 2015, which may be related to decreased wastewater injection caused by regulatory actions or by a decrease in unconventional oil and gas production. Nevertheless, the 2017 forecasted hazard is still significantly elevated in Oklahoma compared to the hazard calculated from seismicity before 2009.

The U.S. Geological Survey Astrogeology Science Center

Released July 17, 2017 00:00 EST

2017, Fact Sheet 2017-3038

Laszlo P. Kestay, R. Greg Vaughan, Lisa R. Gaddis, Kenneth E. Herkenhoff, Justin J. Hagerty

In 1960, Eugene Shoemaker and a small team of other scientists founded the field of astrogeology to develop tools and methods for astronauts studying the geology of the Moon and other planetary bodies. Subsequently, in 1962, the U.S. Geological Survey Branch of Astrogeology was established in Menlo Park, California. In 1963, the Branch moved to Flagstaff, Arizona, to be closer to the young lava flows of the San Francisco Volcanic Field and Meteor Crater, the best preserved impact crater in the world. These geologic features of northern Arizona were considered good analogs for the Moon and other planetary bodies and valuable for geologic studies and astronaut field training. From its Flagstaff campus, the USGS has supported the National Aeronautics and Space Administration (NASA) space program with scientific and cartographic expertise for more than 50 years.

Application of at-site peak-streamflow frequency analyses for very low annual exceedance probabilities

Released July 17, 2017 00:00 EST

2017, Scientific Investigations Report 2017-5038

William H. Asquith, Julie E. Kiang, Timothy A. Cohn

The U.S. Geological Survey (USGS), in cooperation with the U.S. Nuclear Regulatory Commission, has investigated statistical methods for probabilistic flood hazard assessment to provide guidance on very low annual exceedance probability (AEP) estimation of peak-streamflow frequency and the quantification of corresponding uncertainties using streamgage-specific data. The term “very low AEP” implies exceptionally rare events defined as those having AEPs less than about 0.001 (or 1 × 10–3 in scientific notation or for brevity 10–3). Such low AEPs are of great interest to those involved with peak-streamflow frequency analyses for critical infrastructure, such as nuclear power plants. Flood frequency analyses at streamgages are most commonly based on annual instantaneous peak streamflow data and a probability distribution fit to these data. The fitted distribution provides a means to extrapolate to very low AEPs. Within the United States, the Pearson type III probability distribution, when fit to the base-10 logarithms of streamflow, is widely used, but other distribution choices exist. The USGS-PeakFQ software, implementing the Pearson type III within the Federal agency guidelines of Bulletin 17B (method of moments) and updates to the expected moments algorithm (EMA), was specially adapted for an “Extended Output” user option to provide estimates at selected AEPs from 10–3 to 10–6. Parameter estimation methods, in addition to product moments and EMA, include L-moments, maximum likelihood, and maximum product of spacings (maximum spacing estimation). This study comprehensively investigates multiple distributions and parameter estimation methods for two USGS streamgages (01400500 Raritan River at Manville, New Jersey, and 01638500 Potomac River at Point of Rocks, Maryland). The results of this study specifically involve the four methods for parameter estimation and up to nine probability distributions, including the generalized extreme value, generalized log-normal, generalized Pareto, and Weibull. Uncertainties in streamflow estimates for corresponding AEP are depicted and quantified as two primary forms: quantile (aleatoric [random sampling] uncertainty) and distribution-choice (epistemic [model] uncertainty). Sampling uncertainties of a given distribution are relatively straightforward to compute from analytical or Monte Carlo-based approaches. Distribution-choice uncertainty stems from choices of potentially applicable probability distributions for which divergence among the choices increases as AEP decreases. Conventional goodness-of-fit statistics, such as Cramér-von Mises, and L-moment ratio diagrams are demonstrated in order to hone distribution choice. The results generally show that distribution choice uncertainty is larger than sampling uncertainty for very low AEP values.

Reclamation after oil and gas development does not speed up succession or plant community recovery in big sagebrush ecosystems in Wyoming

Released July 16, 2017 00:00 EST

2017, Restoration Ecology

Caitlin M. Rottler, Ingrid C. Burke, Kyle A. Palmquist, John B. Bradford, William K. Lauenroth

Article for intended outlet: Restoration Ecology. Abstract: Reclamation is an application of treatment(s) following a disturbance to promote succession and accelerate the return of target conditions. Previous studies have framed reclamation in the context of succession by studying its effectiveness in re-establishing late-successional plant communities. Re-establishment of these plant communities is especially important and potentially challenging in regions such as drylands and shrub steppe ecosystems where succession proceeds slowly. Dryland shrub steppe ecosystems are frequently associated with areas rich in fossil-fuel energy sources, and as such the need for effective reclamation after disturbance from fossil-fuel-related energy development is great. Past research in this field has focused primarily on coal mines; few researchers have studied reclamation after oil and gas development. To address this research gap and to better understand the effect of reclamation on rates of succession in dryland shrub steppe ecosystems, we sampled oil and gas wellpads and adjacent undisturbed big sagebrush plant communities in Wyoming, USA and quantified the extent of recovery for major functional groups on reclaimed and unreclaimed (recovered via natural succession) wellpads relative to the undisturbed plant community. Reclamation increased the rate of recovery for all forb and grass species as a group and for perennial grasses, but did not affect other functional groups. Rather, analyses comparing recovery to environmental variables and time since wellpad abandonment showed that recovery of other groups were affected primarily by soil texture and time since wellpad abandonment. This is consistent with studies in other ecosystems where reclamation has been implemented, suggesting that reclamation may not help re-establish late-successional plant communities more quickly than they would re-establish naturally.

Research, monitoring, and evaluation of emerging issues and measures to recover the Snake River Fall Chinook Salmon ESU, 1/1/2016 - 12/31/2016

Released July 16, 2017 00:00 EST

2017, Report

William P. Connor, Frank L. Mullins, Kenneth F. Tiffan, John M. Plumb, Russell W. Perry, John M. Erhardt, Rulon Hemingway, Brad Bickford, Tobyn Rhodes

The portion of the Snake River fall Chinook Salmon Oncorhynchus tshawytscha ESU that spawns upstream of Lower Granite Dam transitioned from low to high abundance during 1992–2016 in association with U.S. Endangered Species Act recovery efforts and other federally mandated actions. This annual report focuses on (1) numeric and habitat use responses by natural- and hatchery-origin spawners, (2) phenotypic and numeric responses by natural-origin juveniles, and (3) predator responses in the Snake River upper and lower reaches as abundance of adult and juvenile fall Chinook Salmon increased. Spawners have located and used most of the available spawning habitat and that habitat is gradually approaching redd capacity. Timing of spawning and fry emergence has been relatively stable; whereas the timing of parr dispersal from riverine rearing habitat into Lower Granite Reservoir has become earlier as apparent abundance of juveniles has increased. Growth rate (g/d) and dispersal size of parr also declined as apparent abundance of juveniles increased. Passage timing of smolts from the two Snake River reaches has become earlier and downstream movement rate faster as estimated abundance of fall Chinook Salmon smolts in Lower Granite Reservoir has increased. In 2016, we described estimated the consumption rate and loss of subyearlings by Smallmouth Bass before, during, and after four hatchery releases. Before releases, Smallmouth Bass consumption rates of subyearling was low (0–0.36 fish/bass/d), but the day after the releases consumption rates reached as high as 1.6 fish/bass/d. Bass consumption in the upper portion of Hells Canyon was high for about 1–2 d before returning to pre-release levels, but in the lower river consumption rates were reduced but took longer to return to pre-release levels. We estimated that most of the subyearlings consumed by bass were of hatchery origin. Smallmouth Bass predation on subyearlings is intense following a hatchery release, but the predation pressure is relatively short-lived as subyearlings quickly disperse downstream. This information will allow us to better estimate subyearling loss to predation from our past efforts at time intervals less than 2 weeks. These findings coupled with stock-recruitment analyses presented in this report provide evidence for density-dependence in the Snake River reaches and in Lower Granite Reservoir that was influenced by the expansion of the recovery program. The long-term goal is to use the information covered here in a comprehensive modeling effort to conduct action effectiveness and uncertainty research and to inform Fish Population, Hydrosystem, Harvest, Hatchery, and Predation and Invasive Species Management RM&E.

Snake River Fall Chinook Salmon life history investigations

Released July 16, 2017 00:00 EST

2017, Report

John M. Erhardt, Brad Bickford, Rulon Hemingway, Tobyn Rhodes, Kenneth F. Tiffan

Predation by nonnative fishes is one factor that has been implicated in the decline of juvenile salmonids in the Pacific Northwest. Impoundment of much of the Snake and Columbia rivers has altered food webs and created habitat favorable for species such as Smallmouth Bass Micropterus dolomieu. Smallmouth Bass are common throughout the Columbia River basin and have become the most abundant predator in lower Snake River reservoirs (Zimmerman and Parker 1995). This is a concern for Snake River Fall Chinook Salmon Oncorhynchus tshawytscha (hereafter, subyearlings) that may be particularly vulnerable due to their relatively small size and because their main-stem rearing habitats often overlap or are in close proximity to habitats used by Smallmouth Bass (Curet 1993; Tabor et al. 1993).

Concern over juvenile salmon predation spawned a number of large-scale studies to quantify its effect in the late 1980s, 1990s, and early 2000s (Poe et al. 1991; Rieman et al. 1991; Vigg et al. 1991; Fritts and Pearsons 2004; Naughton et al. 2004). Smallmouth Bass predation represented 9% of total salmon consumption by predatory fishes in John Day Reservoir, Columbia River, from 1983 through 1986 (Rieman et al. 1991). In transitional habitat between the Hanford Reach of the Columbia River and McNary Reservoir, juvenile salmon (presumably subyearlings) were found in 65% of Smallmouth Bass (>200 mm) stomachs and comprised 59% of the diet by weight (Tabor et al. 1993). Within Lower Granite Reservoir on the Snake River, Naughton et al. (2004) showed that monthly consumption (based on weight) ranged from 5% in the upper reaches of the reservoir to 11% in the forebay. However, studies in the Snake River were conducted soon after Endangered Species Act (ESA) listing of Snake River Fall Chinook Salmon (NMFS 1992). During this time, Fall Chinook Salmon abundance was at an historic low, which may explain why consumption rates were relatively low compared to those from studies conducted in the Columbia and Yakima rivers where abundance was higher (e.g., Tabor et al. 1993; Fritts and Pearsons 2004).

We speculate that predation on subyearlings by Smallmouth Bass in the Snake River may have increased in recent years for several reasons. Since their ESA listing, recovery measures implemented for Snake River Fall Chinook salmon have resulted in a large increase in the juvenile population (Connor et al. 2013). Considering that subyearlings probably now make up a larger portion of the forage fish population, it is plausible they should make up a large portion of Smallmouth Bass diets. Second, migrating subyearlings delay downstream movement in the transition zones of the Clearwater River and Snake River for varying lengths of time (Tiffan et al. 2010), which increases their exposure and vulnerability to predators. Spatial overlap in locations of Smallmouth Bass and subyearlings that died during migration provides support for this (Tiffan et al. 2010). Finally, the later outmigration of subyearlings from the Clearwater River results in their presence in Lower Granite Reservoir during the warmest summer months when predation rates of Smallmouth Bass should be highest.

In 2016, we focused our efforts on Smallmouth Bass predation in Lower Granite Reservoir downstream of the transition zones and the confluence area where we worked during 2012–2015. Similar to past years, our first objective was to quantify Smallmouth Bass consumption rates of subyearlings, determine relative bass abundance, and describe bass diets. In addition, Tiffan et al. (2016a) posited that predation risk to subyearlings may be higher in shoreline habitats that are more suitable for Smallmouth Bass and lower in shoreline habitats that are more suitable for subyearlings. To test this hypothesis, our second objective examines the relationship between Smallmouth Bass predation of subyearlings and habitat suitability.

Preface to the special issue “Impact of omics on comparative immunology”

Released July 15, 2017 00:00 EST

2017, Developmental and Comparative Immunology (75) 1-2

Pierre Boudinot, Unni Grimholt, John D. Hansen

No abstract available.

Renibacterium salmoninarum: Chapter 21

Released July 15, 2017 00:00 EST

2017, Book chapter, Fish Viruses and Bacteria: Pathobiology and Protection

Diane G. Elliott

No abstract available.

Infectious haematopoietic necrosis virus: Chapter 2

Released July 15, 2017 00:00 EST

2017, Book chapter, Fish Viruses and Bacteria: Pathobiology and Protection

Jo-Ann Leong, Gael Kurath

Infectious haematopoietic necrosis virus (IHNV) is a Rhabdovirus that causes significant disease in Pacific salmon (Oncorhynchus spp.), Atlantic salmon (Salmo salar), and rainbow and steelhead trout (O. mykiss). IHNV causes necrosis of the haematopoietic tissues, and consequently it was named infectious haematopoietic necrosis. This virus is waterborne and may transmit horizontally and vertically through virus associated with seminal and ovarian fluids. The clinical signs of disease and diagnosis; pathology; pathophysiology; and control strategies against IHNV are discussed.

Coding conventions and principles for a National Land-Change Modeling Framework

Released July 14, 2017 14:00 EST

2017, Techniques and Methods 6-F1

David I. Donato

This report establishes specific rules for writing computer source code for use with the National Land-Change Modeling Framework (NLCMF). These specific rules consist of conventions and principles for writing code primarily in the C and C++ programming languages. Collectively, these coding conventions and coding principles create an NLCMF programming style. In addition to detailed naming conventions, this report provides general coding conventions and principles intended to facilitate the development of high-performance software implemented with code that is extensible, flexible, and interoperable. Conventions for developing modular code are explained in general terms and also enabled and demonstrated through the appended templates for C++ base source-code and header files. The NLCMF limited-extern approach to module structure, code inclusion, and cross-module access to data is both explained in the text and then illustrated through the module templates. Advice on the use of global variables is provided.

Assessment of PIT tag retention and post-tagging survival in metamorphosing juvenile Sea Lamprey

Released July 14, 2017 00:00 EST

2017, Animal Biotelemetry (5) 1-7

Lee G Simard, V Alex Sotola, J Ellen Marsden, Scott M. Miehls

Background: Passive integrated transponder (PIT) tags have been used to document and monitor the movement or behavior of numerous species of fishes. Data on short-term and long-term survival and tag retention are needed before initiating studies using PIT tags on a new species or life stage. We evaluated the survival and tag retention of 153 metamorphosing juvenile Sea Lamprey Petromyzon marinus tagged with 12 mm PIT tags on three occasions using a simple surgical procedure.

Results: Tag retention was 100% and 98.6% at 24 h and 28-105 d post-tagging. Of the lamprey that retained their tags, 87.3% had incisions sufficiently healed to prevent further loss. Survival was 100% and 92.7% at 24 h and 41-118 d post-tagging with no significant difference in survival between tagged and untagged control lamprey. Of the 11 lamprey that died, four had symptoms that indicated their death was directly related to tagging. Survival was positively correlated with Sea Lamprey length.

Conclusions: Given the overall high level of survival and tag retention in this study, future studies can utilize 12 mm PIT tags to monitor metamorphosing juvenile Sea Lamprey movement and migration patterns.

Influence of temperature on the efficacy of homologous and heterologous DNA vaccines against viral hemorrhagic septicemia in Pacific Herring

Released July 14, 2017 00:00 EST

2017, Journal of Aquatic Animal Health (29) 121-128

Lucas Hart, Niels Lorenzen, Katja Einer-Jensen, Maureen Purcell, Paul Hershberger

Homologous and heterologous (genogroup Ia) DNA vaccines against viral hemorrhagic septicemia virus (genogroup IVa) conferred partial protection in Pacific Herring Clupea pallasii. Early protection at 2 weeks postvaccination (PV) was low and occurred only at an elevated temperature (12.6°C, 189 degree days), where the relative percent survival following viral exposure was similar for the two vaccines (IVa and Ia) and higher than that of negative controls at the same temperature. Late protection at 10 weeks PV was induced by both vaccines but was higher with the homologous vaccine at both 9.0°C and 12.6°C. Virus neutralization titers were detected among 55% of all vaccinated fish at 10 weeks PV. The results suggest that the immune response profile triggered by DNA vaccination of herring was similar to that reported for Rainbow Trout Oncorhynchus mykiss by Lorenzen and LaPatra in 2005, who found interferon responses in the early days PV and the transition to adaptive response later. However, the protective effect was far less prominent in herring, possibly reflecting different physiologies or adaptations of the two fish species.

Estimation of salt loads for the Dolores River in the Paradox Valley, Colorado, 1980–2015

Released July 13, 2017 15:45 EST

2017, Scientific Investigations Report 2017-5059

M. Alisa Mast

Regression models that relate total dissolved solids (TDS) concentrations to specific conductance were used to estimate salt loads for two sites on the Dolores River in the Paradox Valley in western Colorado. The salt-load estimates will be used by the Bureau of Reclamation to evaluate salt loading to the river coming from the Paradox Valley and the effect of the Paradox Valley Unit (PVU), a project designed to reduce the salinity of the Colorado River. A second-order polynomial provided the best fit of the discrete data for both sites on the river. The largest bias occurred in samples with elevated sulfate concentrations (greater than 500 milligrams per liter), which were associated with short-duration runoff events in late summer and fall. Comparison of regression models from a period of time before operation began at the PVU and three periods after operation began suggests the relation between TDS and specific conductance has not changed over time. Net salt gain through the Paradox Valley was estimated as the TDS load at the downstream site minus the load at the upstream site. The mean annual salt gain was 137,900 tons per year prior to operation of the PVU (1980–1993) and 43,300 tons per year after the PVU began operation (1997–2015). The difference in annual salt gain in the river between the pre-PVU and post-PVU periods was 94,600 tons per year, which represents a nearly 70 percent reduction in salt loading to the river.

Maternal transfer of mercury to songbird eggs

Released July 13, 2017 00:00 EST

2017, Environmental Pollution (230) 463-468

Josh Ackerman, C. Alex Hartman, Mark Herzog

We evaluated the maternal transfer of mercury to eggs in songbirds, determined whether this relationship differed between songbird species, and developed equations for predicting mercury concentrations in eggs from maternal blood. We sampled blood and feathers from 44 house wren (Troglodytes aedon) and 34 tree swallow (Tachycineta bicolor) mothers and collected their full clutches (n = 476 eggs) within 3 days of clutch completion. Additionally, we sampled blood and feathers from 53 tree swallow mothers and randomly collected one egg from their clutches (n = 53 eggs) during mid to late incubation (6–10 days incubated) to evaluate whether the relationship varied with the timing of sampling the mother's blood. Mercury concentrations in eggs were positively correlated with mercury concentrations in maternal blood sampled at (1) the time of clutch completion for both house wrens (R2 = 0.97) and tree swallows (R2 = 0.97) and (2) during mid to late incubation for tree swallows (R2 = 0.71). The relationship between mercury concentrations in eggs and maternal blood did not differ with the stage of incubation when maternal blood was sampled. Importantly, the proportion of mercury transferred from mothers to their eggs decreased substantially with increasing blood mercury concentrations in tree swallows, but increased slightly with increasing blood mercury concentrations in house wrens. Additionally, the proportion of mercury transferred to eggs at the same maternal blood mercury concentration differed between species. Specifically, tree swallow mothers transferred 17%–107% more mercury to their eggs than house wren mothers over the observed mercury concentrations in maternal blood (0.15–1.92 μg/g ww). In contrast, mercury concentrations in eggs were not correlated with those in maternal feathers and, likewise, mercury concentrations in maternal blood were not correlated with those in feathers (all R2 < 0.01). We provide equations to translate mercury concentrations from maternal blood to eggs (and vice versa), which should facilitate comparisons among studies and help integrate toxicity benchmarks into a common tissue.

Behavioral flexibility as a mechanism for coping with climate change

Released July 13, 2017 00:00 EST

2017, Frontiers in Ecology and the Environment

Erik Beever, L. Embere Hall, Johanna Varner, Anne E. Loosen, Jason Dunham, Megan K. Gahl, Felisa A. Smith, Joshua J. Lawler

Of the primary responses to contemporary climate change – “move, adapt, acclimate, or die” – that are available to organisms, “acclimate” may be effectively achieved through behavioral modification. Behavioral flexibility allows animals to rapidly cope with changing environmental conditions, and behavior represents an important component of a species’ adaptive capacity in the face of climate change. However, there is currently a lack of knowledge about the limits or constraints on behavioral responses to changing conditions. Here, we characterize the contexts in which organisms respond to climate variability through behavior. First, we quantify patterns in behavioral responses across taxa with respect to timescales, climatic stimuli, life-history traits, and ecology. Next, we identify existing knowledge gaps, research biases, and other challenges. Finally, we discuss how conservation practitioners and resource managers can incorporate an improved understanding of behavioral flexibility into natural resource management and policy decisions.

Improved efficiency of maximum likelihood analysis of time series with temporally correlated errors

Released July 13, 2017 00:00 EST

2017, Journal of Geodesy (91) 985-994

John O. Langbein

Most time series of geophysical phenomena have temporally correlated errors. From these measurements, various parameters are estimated. For instance, from geodetic measurements of positions, the rates and changes in rates are often estimated and are used to model tectonic processes. Along with the estimates of the size of the parameters, the error in these parameters needs to be assessed. If temporal correlations are not taken into account, or each observation is assumed to be independent, it is likely that any estimate of the error of these parameters will be too low and the estimated value of the parameter will be biased. Inclusion of better estimates of uncertainties is limited by several factors, including selection of the correct model for the background noise and the computational requirements to estimate the parameters of the selected noise model for cases where there are numerous observations. Here, I address the second problem of computational efficiency using maximum likelihood estimates (MLE). Most geophysical time series have background noise processes that can be represented as a combination of white and power-law noise, 1/fα1/fα with frequency, f. With missing data, standard spectral techniques involving FFTs are not appropriate. Instead, time domain techniques involving construction and inversion of large data covariance matrices are employed. Bos et al. (J Geod, 2013. doi:10.1007/s00190-012-0605-0) demonstrate one technique that substantially increases the efficiency of the MLE methods, yet is only an approximate solution for power-law indices >1.0 since they require the data covariance matrix to be Toeplitz. That restriction can be removed by simply forming a data filter that adds noise processes rather than combining them in quadrature. Consequently, the inversion of the data covariance matrix is simplified yet provides robust results for a wider range of power-law indices.

Deepwater sculpin status and recovery in Lake Ontario

Released July 13, 2017 00:00 EST

2017, Journal of Great Lakes Research

Brian C. Weidel, Maureen Walsh, Michael J. Connerton, Brian F. Lantry, Jana R. Lantry, Jeremy P. Holden, Michael J. Yuille, James A. Hoyle

Deepwater sculpin are important in oligotrophic lakes as one of the few fishes that use deep profundal habitats and link invertebrates in those habitats to piscivores. In Lake Ontario the species was once abundant, however drastic declines in the mid-1900s led some to suggest the species had been extirpated and ultimately led Canadian and U.S. agencies to elevate the species' conservation status. Following two decades of surveys with no captures, deepwater sculpin were first caught in low numbers in 1996 and by the early 2000s there were indications of population recovery. We updated the status of Lake Ontario deepwater sculpin through 2016 to inform resource management and conservation. Our data set was comprised of 8431 bottom trawls sampled from 1996 to 2016, in U.S. and Canadian waters spanning depths from 5 to 225 m. Annual density estimates generally increased from 1996 through 2016, and an exponential model estimated the rate of population increase was ~ 59% per year. The mean total length and the proportion of fish greater than the estimated length at maturation (~ 116 mm) generally increased until a peak in 2013. In addition, the mean length of all deepwater sculpin captured in a trawl significantly increased with depth. Across all years examined, deepwater sculpin densities generally increased with depth, increasing sharply at depths > 150 m. Bottom trawl observations suggest the Lake Ontario deepwater sculpin population has recovered and current densities and biomass densities may now be similar to the other Great Lakes.

Sand ridge morphology and bedform migration patterns derived from bathymetry and backscatter on the inner-continental shelf offshore of Assateague Island, USA

Released July 13, 2017 00:00 EST

2017, Continental Shelf Research (144) 80-97

Elizabeth Pendleton, Laura Brothers, E. Robert Thieler, Edward Sweeney

The U.S. Geological Survey and the National Oceanographic and Atmospheric Administration conducted geophysical and hydrographic surveys, respectively, along the inner-continental shelf of Fenwick and Assateague Islands, Maryland and Virginia over the last 40 years. High resolution bathymetry and backscatter data derived from surveys over the last decade are used to describe the morphology and presence of sand ridges on the inner-continental shelf and measure the change in the position of smaller-scale (10–100 s of meters) seafloor features. Bathymetric surveys from the last 30 years link decadal-scale sand ridge migration patterns to the high-resolution measurements of smaller-scale bedform features. Sand ridge morphology on the inner-shelf changes across-shore and alongshore. Areas of similar sand ridge morphology are separated alongshore by zones where ridges are less pronounced or completely transected by transverse dunes. Seafloor-change analyses derived from backscatter data over a 4–7 year period show that southerly dune migration increases in magnitude from north to south, and the east-west pattern of bedform migration changes ~ 10 km north of the Maryland-Virginia state line. Sand ridge morphology and occurrence and bedform migration changes may be connected to observed changes in geologic framework including topographic highs, deflated zones, and sand availability. Additionally, changes in sand ridge occurrence and morphology may help explain changes in the long-term shoreline trends along Fenwick and Assateague Islands. Although the data presented here cannot quantitatively link sand ridges to sediment transport and shoreline change, it does present a compelling relationship between inner-shelf sand availability and movement, sand ridge occurrence and morphology, geologic framework, and shoreline behavior.

The environmental geochemistry of mineral deposits, Part A. Processes, techniques, and health issues

Released July 13, 2017 00:00 EST

1999, Book, Reviews in Economic Geology

Geoffrey S. Plumlee, Mark J. Logsdon, editor(s)

No abstract available. 

Estimating the environmental behavior of inorganic and organometal contaminants: Solubilities, bioaccumulation, and acute aquatic toxicities

Released July 12, 2017 14:30 EST

1999, Water-Resources Investigations Report 99-4018-B

James P. Hickey

The estimation of environmental properties of inorganic species has been difficult. In this presentation aqueous solubility, bioconcentration and acute aquatic toxicity are estimated for inorganic compounds using existing Linear Solvation Energy Relationship (LSER) equations. Many estimations fall within an order of magnitude of the measured property. For complex solution chemistry, the accuracy of the estimations improve with the more complete description of the solution species present. The toxicities also depend on an estimation of the bioactive amount and configuration. A number of anion/cation combinations (salts) still resist accurate property estimation, and the reasons currently are not understood. These new variable values will greatly extend the application and utility of LSER for the estimation of environmental properties.

Allowable take of a population of red-winged blackbirds in the northern Great Plains

Released July 12, 2017 00:00 EST

2017, Book chapter, Ecology and management of blackbirds (Icteridae) in North America

Michael C. Runge, John Sauer

Red-winged blackbirds (Agelaius phoeniceus) are protected under the Migratory Bird Treaty Act (MBTA), which has provisions against take. Blackbirds may be taken legally without a Federal permit, however, under an existing Depredation Order (50 CFR 21.43), which allows for take of blackbirds that are in the process of doing, or about to do, agricultural damage. Modeling the effect of take on blackbird population allows us to balance the conservation protections of the MBTA with the protection of agricultural interests. A quantitative framework based on harvest theory, demography, and population status has been used to assess the allowable take of a number of species of birds under the MBTA. In this chapter, we calculate allowable levels of take for two populations of red-winged blackbirds in the northern Great Plains from estimates of intrinsic growth rate and population size.

Coupling gene-based and classic veterinary diagnostics improves interpretation of health and immune function in the Agassiz’s desert tortoise (Gopherus agassizii)

Released July 12, 2017 00:00 EST

2017, Conservation Physiology (5)

Karla K. Drake, Lizabeth Bowen, Rebecca L. Lewison, Todd C. Esque, Kenneth E. Nussear, Josephine Braun, Shannon C. Waters, A. Keith Miles

The analysis of blood constituents is a widely used tool to aid in monitoring of animal health and disease. However, classic blood diagnostics (i.e. hematologic and plasma biochemical values) often do not provide sufficient information to determine the state of an animal’s health. Field studies on wild tortoises and other reptiles have had limited success in drawing significant inferences between blood diagnostics and physiological and immunological condition. However, recent research using gene transcription profiling in the threatened Mojave desert tortoise (Gopherus agassizii) has proved useful in identifying immune or physiologic responses and overall health. To improve our understanding of health and immune function in tortoises, we evaluated both standard blood diagnostic (body condition, hematologic, plasma biochemistry values, trace elements, plasma proteins, vitamin A levels) and gene transcription profiles in 21 adult tortoises (11 clinically abnormal; 10 clinically normal) from Clark County, NV, USA. Necropsy and histology evaluations from clinically abnormal tortoises revealed multiple physiological complications, with moderate to severe rhinitis or pneumonia being the primary cause of morbidity in all but one of the examined animals. Clinically abnormal tortoises had increased transcription for four genes (SOD, MyD88, CL and Lep), increased lymphocyte production, biochemical enzymes and organics, trace elements of copper, and decreased numbers of leukocytes. We found significant positive correlations between increased transcription for SOD and increased trace elements for copper, as well as genes MyD88 and Lep with increased inflammation and microbial insults. Improved methods for health assessments are an important element of monitoring tortoise population recovery and can support the development of more robust diagnostic measures for ill animals, or individuals directly impacted by disturbance.

The effects of varying injection rates in Osage County, Oklahoma, on the 2016 Mw5.8 Pawnee earthquake

Released July 12, 2017 00:00 EST

2017, Seismological Research Letters (88) 1040-1053

Andrew J. Barbour, Jack H. Norbeck, Justin L. Rubinstein

The 2016 Mw 5.8 Pawnee earthquake occurred in a region with active wastewater injection into a basal formation group. Prior to the earthquake, fluid injection rates at most wells were relatively steady, but newly collected data show significant increases in injection rate in the years leading up to earthquake. For the same time period, the total volumes of injected wastewater were roughly equivalent between variable‐rate and constant‐rate wells. To understand the possible influence of these changes in injection, we simulate the variable‐rate injection history and its constant‐rate equivalent in a layered poroelastic half‐space to explore the interplay between pore‐pressure effects and poroelastic effects on the fault leading up to the mainshock. In both cases, poroelastic stresses contribute a significant proportion of Coulomb failure stresses on the fault compared to pore‐pressure increases alone, but the resulting changes in seismicity rate, calculated using a rate‐and‐state frictional model, are many times larger when poroelastic effects are included, owing to enhanced stressing rates. In particular, the variable‐rate simulation predicts more than an order of magnitude increase in seismicity rate above background rates compared to the constant‐rate simulation with equivalent volume. The observed cumulative density of earthquakes prior to the mainshock within 10 km of the injection source exhibits remarkable agreement with seismicity predicted by the variable‐rate injection case.

Ecohydrological role of biological soil crusts across a gradient in levels of development

Released July 12, 2017 00:00 EST

2017, Ecohydrology

Kristen M. Whitney, Enrique R. Vivoni, Michael C. Duniway, John B. Bradford, Sasha C. Reed, Jayne Belnap

Though biological soil crusts (biocrusts) form abundant covers in arid and semiarid regions, their competing effects on soil hydrologic conditions are rarely accounted for in models. This study presents the modification of a soil water balance model to account for the presence of biocrusts at different levels of development (LOD) and their impact on one-dimensional hydrologic processes during warm and cold seasons. The model is developed, tested, and applied to study the hydrologic controls of biocrusts in context of a long-term manipulative experiment equipped with meteorological and soil moisture measurements in a Colorado Plateau ecosystem near Moab, Utah. The climate manipulation treatments resulted in distinct biocrust communities, and model performance with respect to soil moisture was assessed in experimental plots with varying LOD as quantified through a field-based roughness index (RI). Model calibration and testing yielded excellent comparisons to observations and smooth variations of biocrust parameters with RI approximated through simple regressions. The model was then used to quantify how LOD affects soil infiltration, evapotranspiration, and runoff under calibrated conditions and in simulation experiments with gradual modifications in biocrust porosity and hydraulic conductivity. Simulation results show that highly developed biocrusts modulate soil moisture nonlinearly with LOD by altering soil infiltration and buffering against evapotranspiration losses, with small impacts on runoff. The nonlinear and threshold variations of the soil water balance in the presence of biocrusts of varying LOD helps explain conflicting outcomes of various field studies and sheds light on the ecohydrological role of biocrusts in arid and semiarid ecosystems.

Dispersal hazards of Pseudogymnoascus destructans by bats and human activity at hibernacula in summer

Released July 12, 2017 00:00 EST

2017, Journal of Wildlife Diseases

Anne Ballmann, Miranda R. Torkelson, Elizabeth A. Bohuski, Robin E. Russell, David Blehert

Bats occupying hibernacula during summer are exposed to Pseudogymnoascus destructans (Pd), the causative agent of white-nose syndrome (WNS), and may contribute to its dispersal. Furthermore, equipment and clothing exposed to cave environments are a potential source for human-assisted spread of Pd. To explore dispersal hazards for Pd during the nonhibernal season, we tested samples that were collected from bats, the environment, and equipment at hibernacula in the eastern US between 18 July–22 August 2012. Study sites included six hibernacula known to harbor bats with Pd with varying winter-count impacts from WNS and two hibernacula (control sites) without prior history of WNS. Nucleic acid from Pd was detected from wing-skin swabs or guano from 40 of 617 bats (7% prevalence), including males and females of five species at five sites where WNS had previously been confirmed as well as from one control site. Analysis of guano collected during summer demonstrated a higher apparent prevalence of Pd among bats (17%, 37/223) than did analysis of wing-skin swabs (1%, 4/617). Viable Pd cultured from wing skin (2%, 1/56) and low recapture rates at all sites suggested bats harboring Pd during summer could contribute to pathogen dispersal. Additionally, Pd DNA was detected on clothing and trapping equipment used inside and near hibernacula, and Pd was detected in sediment more readily than in swabs of hibernaculum walls. Statistically significant differences in environmental abundance of Pd were not detected among sites, but prevalence of Pd differed between sites and among bat species. Overall, bats using hibernacula in summer can harbor Pd on their skin and in their guano, and demonstration of Pd on clothing, traps, and other equipment used at hibernacula during summertime within the WNS-affected region indicates risk for pathogen dispersal during the nonhibernal season.

The long-term legacy of geomorphic and riparian vegetation feedbacks on the dammed Bill Williams River, Arizona, USA

Released July 12, 2017 00:00 EST

2017, Ecohydrology (10)

Li Kui, John C. Stella, Patrick B. Shafroth, Kyle House, Andrew C. Wilcox

On alluvial rivers, fluvial landforms and riparian vegetation communities codevelop as a result of feedbacks between plants and abiotic processes. The influence of vegetation on river channel and floodplain geomorphology can be particularly strong on dammed rivers with altered hydrology and reduced flood disturbance. We used a 56-year series of aerial photos on the dammed Bill Williams River (Arizona, USA) to investigate how (a) different woody riparian vegetation types influence river channel planform and (b) how different fluvial landforms drive the composition of riparian plant communities over time. We mapped vegetation types and geomorphic surfaces and quantified how relations between fluvial and biotic processes covaried over time using linear mixed models. In the decades after the dam was built, woody plant cover within the river's bottomland nearly doubled, narrowing the active channel by 60% and transforming its planform from wide and braided to a single thread and more sinuous channel. Compared with native cottonwood–willow vegetation, nonnative tamarisk locally induced a twofold greater reduction in channel braiding. Vegetation expanded at different rates depending on the type of landform, with tamarisk cover on former high-flow channels increasing 17% faster than cottonwood–willow. Former low-flow channels with frequent inundation supported a greater increase in cottonwood–willow relative to tamarisk. These findings give insight into how feedbacks between abiotic and biotic processes in river channels accelerate and fortify changes triggered by dam construction, creating river systems increasingly distinct from predam ecological communities and landforms, and progressively more resistant to restoration of predam forms and processes.


Land area change in coastal Louisiana (1932 to 2016)

Released July 12, 2017 00:00 EST

2017, Scientific Investigations Map 3381

Brady R. Couvillion, Holly Beck, Donald Schoolmaster, Michelle Fischer

Coastal Louisiana wetlands are one of the most critically threatened environments in the United States. These wetlands are in peril because Louisiana currently experiences greater coastal wetland loss than all other States in the contiguous United States combined. The analyses of landscape change presented here have utilized historical surveys, aerial, and satellite data to quantify landscape changes from 1932 to 2016. Analyses show that coastal Louisiana has experienced a net change in land area of approximately -4,833 square kilometers (modeled estimate: -5,197 +/- 443 square kilometers) from 1932 to 2016. This net change in land area amounts to a decrease of approximately 25 percent of the 1932 land area. Previous studies have presented linear rates of change over multidecadal time periods which unintentionally suggest that wetland change occurs at a constant rate, although in many cases, wetland change rates vary with time. A penalized regression spline technique was used to determine the model that best fit the data, rather than fitting the data with linear trends. Trend analyses from model fits indicate that coastwide rates of wetland change have varied from -83.5 +/- 11.8 square kilometers per year to -28.01 +/- 16.37 square kilometers per year. To put these numbers into perspective, this equates to long-term average loss rates of approximately an American football field’s worth of coastal wetlands within 34 minutes when losses are rapid to within 100 minutes at more recent, slower rates. Of note is the slowing of the rate of wetland change since its peak in the mid- 1970s. Not only have rates of wetland loss been decreasing since that time, a further rate reduction has been observed since 2010. Possible reasons for this reduction include recovery from lows affected by the hurricanes of 2005 and 2008, the lack of major storms in the past 8 years, a possible slowing of subsidence rates, the reduction in and relocation of oil and gas extraction and infrastructure since the peak of such activities in the late 1960s, and restoration activities. In addition, many wetlands in more exposed positions in the landscape have already been lost. Most notable of the factors listed above is the lack of major storms over the past 8 years. The observed coastwide net “stability” in land area observed over the past 6–8 years does not imply that loss has ceased. Future disturbance events such as a major hurricane impact could change the trajectory of the rates. Sea-level rise is projected to increase at an exponential rate, and that would also expedite the rate of wetland loss.

Assessment of undiscovered conventional oil and gas resources in the West Korea Bay–North Yellow Sea Basin, North Korea and China, 2017

Released July 11, 2017 16:00 EST

2017, Fact Sheet 2017-3041

Christopher J. Schenk, Marilyn E. Tennyson, Tracey J. Mercier, Sarah J. Hawkins, Thomas M. Finn, Stephanie B. Gaswirth, Kristen R. Marra, Timothy R. Klett, Phuong A. Le, Heidi M. Leathers-Miller, Cheryl A. Woodall

Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered, technically recoverable conventional resources of 1.1 billion barrels of oil and 2.2 trillion cubic feet of gas in the West Korea Bay–North Yellow Sea Basin, North Korea and China.

Revised tephra volumes for Cascade Range volcanoes

Released July 11, 2017 00:00 EST

2017, Journal of Volcanology and Geothermal Research (341) 42-52

Manuel Nathenson

Isopach maps from tephra eruptions from Mount St. Helens were reported in Carey et al. (1995) and for tephra eruptions from Glacier Peak in Gardner et al. (1998). For exponential thinning, the isopach data only define a single slope on a log thickness versus square root of area plot. Carey et al. (1995) proposed a model that was used to estimate a second slope, and volumes were presented in both studies using this model. A study by Sulpizio (2005) for estimating the second slope and square root of area where the lines intersect involves a systematic analysis of many eruptions to provide correlation equations. The purpose of this paper is to recalculate the volumes of Cascades eruptions and compare results from the two methods. In order to gain some perspective on the methods for estimating the second slope, we use data for thickness versus distance beyond the last isopach that are available for some of the larger eruptions in the Cascades. The thickness versus square root of area method is extended to thickness versus distance by developing an approximate relation between the two assuming elliptical isopachs with the source at one of the foci. Based on the comparisons made between the Carey et al. (1995) and Sulpizio (2005) methods, it is felt that the later method provides a better estimate of the second slope. For Mount St. Helens, the estimates of total volume using the Sulpizio (2005) method are generally smaller than those using the Carey et al. (1995) method. For the volume estimates of Carey et al. (1995), the volume of the May 18, 1980, eruption of Mount St. Helens is smaller than six of the eight previous eruptions. With the new volumes using the Sulpizio (2005) method, the 1980 eruption is smaller in volume than the upper end of the range for only three of the layers (Wn, Ye, and Yn) and is the same size as layer We. Thus the 1980 eruption becomes representative of the mid-range of volumes rather than being in the lower range.

Landscape context and the biophysical response of rivers to dam removal in the United States

Released July 11, 2017 00:00 EST

2017, PLoS ONE (7)

Melissa M. Foley, Francis J. Magilligan, Christian Torgersen, Jon J. Major, Chauncey Anderson, Patrick J. Connolly, Daniel Wieferich, Patrick B. Shafroth, James E. Evans, Dana M. Infante, Laura Craig

Dams have been a fundamental part of the U.S. national agenda over the past two hundred years. Recently, however, dam removal has emerged as a strategy for addressing aging, obsolete infrastructure and more than 1,100 dams have been removed since the 1970s. However, only 130 of these removals had any ecological or geomorphic assessments, and fewer than half of those included before- and after-removal (BAR) studies. In addition, this growing, but limited collection of dam-removal studies is limited to distinct landscape settings. We conducted a meta-analysis to compare the landscape context of existing and removed dams and assessed the biophysical responses to dam removal for 63 BAR studies. The highest concentration of removed dams was in the Northeast and Upper Midwest, and most have been removed from 3rd and 4th order streams, in low-elevation (< 500 m) and low-slope (< 5%) watersheds that have small to moderate upstream watershed areas (10–1000 km2) with a low risk of habitat degradation. Many of the BAR-studied removals also have these characteristics, suggesting that our understanding of responses to dam removals is based on a limited range of landscape settings, which limits predictive capacity in other environmental settings. Biophysical responses to dam removal varied by landscape cluster, indicating that landscape features are likely to affect biophysical responses to dam removal. However, biophysical data were not equally distributed across variables or clusters, making it difficult to determine which landscape features have the strongest effect on dam-removal response. To address the inconsistencies across dam-removal studies, we provide suggestions for prioritizing and standardizing data collection associated with dam removal activities.

An introduction to high-frequency nutrient and biogeochemical monitoring for the Sacramento–San Joaquin Delta, northern California

Released July 11, 2017 00:00 EST

2017, Scientific Investigations Report 2017-5071

Tamara E.C. Kraus, Brian A. Bergamaschi, Bryan D. Downing

Executive Summary

This report is the first in a series of three reports that provide information about high-frequency (HF) nutrient and biogeochemical monitoring in the Sacramento–San Joaquin Delta of northern California (Delta). This first report provides an introduction to the reasons for and fundamental concepts behind collecting HF measurements, and describes the benefits associated with a real-time, continuous, HF, multi-parameter water quality monitoring station network that is co-located with flow stations. It then provides examples of how HF nutrient measurements have improved our understating of nutrient sources and cycling in aquatic systems worldwide, followed by specific examples from the Delta. These examples describe the ways in which HF instrumentation may be used for both fixed-station and spatial assessments. The overall intent of this document is to describe how HF measurements currently (2017) are being used in the Delta to examine the relationship between nutrient concentrations, nutrient cycling, and aquatic habitat conditions.

The second report in the series (Downing and others, 2017) summarizes information about HF nutrient and associated biogeochemical monitoring in the northern Delta. The report synthesizes data available from the nutrient and water quality monitoring network currently operated by the U.S. Geological Survey in this ecologically important region of the Delta. In the report, we present and discuss the available data at various timescales—first, at the monthly, seasonal, and inter-annual timescales; and, second, for comparison, at the tidal and event (for example, storms, reservoir releases, phytoplankton blooms) timescales. As expected, we determined that there is substantial variability in nitrate concentrations at short timescales within hours, but also significant variability at longer timescales such as months or years. This multi-scale, high variability affects calculation of fluxes and loads, indicating that HF monitoring is necessary for understanding and assessing flux-based processes and outcomes in tidal environments, such as the Delta.

The third report in the series (Bergamaschi and others, 2017) provides information about how to design HF nutrient and biogeochemical monitoring for assessment of nutrient inputs and dynamics in the Delta. The report provides background, principles, and considerations for designing an HF nutrient-monitoring network for the Sacramento–San Joaquin Delta to address high-priority, nutrient-management questions. The report starts with high-priority management questions to be addressed, continues with questions and considerations that place demands and constraints on network design, discusses the principles applicable to network design, and concludes with the presentation of three example nutrient‑monitoring network designs for the Delta. For the three example networks, we assess how they would address high-priority questions identified by the Delta Regional Monitoring Program (Delta Regional Monitoring Program Technical Advisory Committee, 2015).

Synthesis of data from high-frequency nutrient and associated biogeochemical monitoring for the Sacramento–San Joaquin Delta, northern California

Released July 11, 2017 00:00 EST

2017, Scientific Investigations Report 2017-5066

Bryan D. Downing, Brian A. Bergamaschi, Tamara E.C. Kraus

Executive Summary

This report is the second in a series of three reports that provide information about high-frequency (HF) nutrient and biogeochemical monitoring in the Sacramento–San Joaquin Delta of northern California (Delta). The purpose of this report is to synthesize the data available from a nutrient and water-quality HF (about every 15 minutes) monitoring network operated by the U.S. Geological Survey in the northern Delta. In this report, we describe the network and focus on the purpose of each station. We then present and discuss the available data, at various timescales—first at the monthly, seasonal, and inter-annual timescales, and second, for comparison, at the tidal and event timescales. As expected, we determined that there is substantial variability in nitrate-N concentrations at short timescales within hours, but also significant variability at longer timescales such as months or years. Resolving this variability is made possible by the HF data, with the largest variability caused by storms, tides, and diel biological processes. Given this large temporal variability, calculations of cumulative nutrient fluxes (for example, daily, monthly, or annual loads) is difficult without HF data. For example, in the Cache Slough, calculation of the annual load without the tidal variability resulted in a 30 percent underestimation of the true annual load value. We conclude that HF measurements are important for accurate determination of fluxes and loads in tidal environments, but, more importantly, provide important insights into processes and rates of nutrient cycling.

This report, along with the other two reports of this series (Bergamaschi and others, 2017; Kraus, Bergamaschi, and others, 2017), was drafted in cooperation with the Delta Regional Monitoring Program to help scientists, managers, and planners understand how HF data improve our understanding of nutrient sources and sinks, drivers, and effects in the Delta. The first report in the series (Kraus, Bergamaschi, and others, 2017) provides an introduction to the reasons for and fundamental concepts behind using HF monitoring measurements, including a brief summary of nutrient status and trends in the Delta and an extensive literature review showing how and where other research and monitoring programs have used HF monitoring to improve our understanding of nutrient cycling. The report covers the various technologies available for HF nutrient monitoring and presents the different ways HF monitoring instrumentation may be used for fixed station and spatial assessments. Finally, it presents numerous examples of how HF measurements are currently (2017) being used in the Delta to examine how nutrients and nutrient cycling are related to aquatic habitat conditions.

The third report in the series (Bergamaschi and others, 2017) provides the background, principles, and considerations for designing an HF nutrient-monitoring network for the Delta to address high-priority, nutrient-management questions. The report starts with discussion of the high‑priority management questions to be addressed, continues through discussion of the questions and considerations that place demands and constraints on network design, discusses the principles applicable to network design, and concludes with the presentation of three example nutrient-monitoring network designs for the Delta, proposed to address high-priority questions identified by the Delta Regional Monitoring Program (Delta Regional Monitoring Program Technical Advisory Committee, 2015).

Designing a high-frequency nutrient and biogeochemical monitoring network for the Sacramento–San Joaquin Delta, northern California

Released July 11, 2017 00:00 EST

2017, Scientific Investigations Report 2017-5058

Brian A. Bergamaschi, Bryan D. Downing, Tamara E.C. Kraus, Brian A. Pellerin

Executive Summary

This report is the third in a series of three reports that provide information about how high-frequency (HF) nutrient monitoring may be used to assess nutrient inputs and dynamics in the Sacramento–San Joaquin Delta, California (Delta). The purpose of this report is to provide the background, principles, and considerations for designing an HF nutrient-monitoring network for the Delta to address high-priority, nutrient-management questions. The report starts with discussion of the high-priority management questions to be addressed, continues through discussion of the questions and considerations that place demands and constraints on network design, discusses the principles applicable to network design, and concludes with the presentation of three example nutrient-monitoring network designs for the Delta. For three example network designs, we assess how they would address high-priority questions that have been identified by the Delta Regional Monitoring Program (Delta Regional Monitoring Program Technical Advisory Committee, 2015).

This report, along with the other two reports of this series (Kraus and others, 2017; Downing and others, 2017), was drafted in cooperation with the Delta Regional Monitoring Program to help scientists, managers, and planners understand how HF data improve our understanding of nutrient sources and sinks, drivers, and effects in the Delta. The first report in the series (Kraus and others, 2017) provides an introduction to the reasons for and fundamental concepts behind using HF monitoring measurements, including a brief summary of nutrient status and trends in the Delta and an extensive literature review showing how and where other research and monitoring programs have used HF monitoring to improve our understanding of nutrient cycling. The report covers the various technologies available for HF nutrient monitoring and presents the different ways HF monitoring instrumentation may be used for both fixed station and spatial assessments. Finally, it presents numerous examples of how HF measurements are currently (2017) being used in the Delta to examine how nutrients and nutrient cycling are related to aquatic habitat conditions.

The second report in the series (Downing and others, 2017) summarizes information about HF nutrient and associated biogeochemical monitoring in the north Delta. The report synthesizes data available from the nutrient and water quality monitoring network currently (2017) operated by the U.S. Geological Survey in this ecologically important region of the Delta. In the report, we present and discuss the available data at various timescales—first at the monthly, seasonal, and inter-annual timescales; and, second, for comparison, at the tidal and event timescales. As expected, we determined that there is substantial variability in nitrate concentrations at short timescales, such as within a few hours, but also significant variability at longer timescales such as months or years. This high variability affects calculation of fluxes and loads, indicating that HF monitoring is necessary for understanding and assessing flux-based processes and outcomes in Delta tidal environments.

Map of the approximate inland extent of saltwater at the base of the Biscayne aquifer in the Model Land Area of Miami-Dade County, Florida, 2016

Released July 11, 2017 00:00 EST

2017, Scientific Investigations Map 3380

Scott T. Prinos

The inland extent of saltwater at the base of the Biscayne aquifer in the Model Land Area of Miami-Dade County, Florida, was mapped in 2011. Since that time, the saltwater interface has continued to move inland. The interface is near several active well fields; therefore, an updated approximation of the inland extent of saltwater and an improved understanding of the rate of movement of the saltwater interface are necessary. A geographic information system was used to create a map using the data collected by the organizations that monitor water salinity in this area. An average rate of saltwater interface movement of 140 meters per year was estimated by dividing the distance between two monitoring wells (TPGW-7L and Sec34-MW-02-FS) by the travel time. The travel time was determined by estimating the dates of arrival of the saltwater interface at the wells and computing the difference. This estimate assumes that the interface is traveling east to west between the two monitoring wells. Although monitoring is spatially limited in this area and some of the wells are not ideally designed for salinity monitoring, the monitoring network in this area is improving in spatial distribution and most of the new wells are well designed for salinity monitoring. The approximation of the inland extent of the saltwater interface and the estimated rate of movement of the interface are dependent on existing data. Improved estimates could be obtained by installing uniformly designed monitoring wells in systematic transects extending landward of the advancing saltwater interface.

Optimization of limestone drains for long- term treatment of acidic mine drainage, Swatara Creek Basin, Schuylkill County, PA

Released July 11, 2017 00:00 EST

2004, Conference Paper, Proceedings America Society of Mining and Reclamation, 2004

Charles A. Cravotta III, S.J. Ward, Daniel J. Koury, R.D. Koch

Limestone drains were constructed in 1995, 1997, and 2000 to treat acidic mine drainage (AMD) from the Orchard, Buck Mtn., and Hegins discharges, respectively, in the Swatara Creek Basin, Southern Anthracite Coalfield, east-central Pennsylvania. This report summarizes the construction characteristics and performance of each of the limestone drains on the basis of influent and effluent quality and laboratory tests of variables affecting limestone dissolution rates. Data for influent and effluent indicate substantial alkalinity production by the Orchard and Buck Mtn. limestone drains and only marginal benefits from the Hegins drain. Nevertheless, the annual alkalinity loading rates have progressively declined with age of all three systems. Collapsible-container (cubitainer) testing was conducted to evaluate current scenarios and possible options for reconstruction and maintenance of the limestone drains to optimize their long-term performance. The cubitainer tests indicated dissolution rates for the current configurations that were in agreement with field flux data (net loading) for alkalinity and dissolved calcium. The dissolution rates in cubitainers were larger for closed conditions than open conditions, but the rates were comparable for coated and uncoated limestone for a given condition. Models developed on the basis of the cubitainer testing indicate (1) exponential declines in limestone mass and corresponding alkalinity loading rates with increased age of limestone drains and (2) potential for improved performance with enlargement, complete burial, and/or regular flushing of the systems.

Water quality and quantity and simulated surface-water and groundwater flow in the Laurel Hill Creek Basin, southwestern Pennsylvania, 1991–2007

Released July 10, 2017 15:00 EST

2017, Scientific Investigations Report 2016-5082

Daniel G. Galeone, Dennis W. Risser, Lee W. Eicholtz, Scott A. Hoffman

Laurel Hill Creek is considered one of the most pristine waterways in southwestern Pennsylvania and has high recreational value as a high-quality cold-water fishery; however, the upper parts of the basin have documented water-quality impairments. Groundwater and surface water are withdrawn for public water supply and the basin has been identified as a Critical Water Planning Area (CWPA) under the State Water Plan. The U.S. Geological Survey, in cooperation with the Somerset County Conservation District, collected data and developed modeling tools to support the assessment of water-quality and water-quantity issues for a basin designated as a CWPA. Streams, springs, and groundwater wells were sampled for water quality in 2007. Streamflows were measured concurrent with water-quality sampling at main-stem sites on Laurel Hill Creek and tributaries in 2007. Stream temperatures were monitored continuously at five main-stem sites from 2007 to 2010. Water usage in the basin was summarized for 2003 and 2009 and a Water-Analysis Screening Tool (WAST) developed for the Pennsylvania State Water Plan was implemented to determine whether the water use in the basin exceeded the “safe yield” or “the amount of water that can be withdrawn from a water resource over a period of time without impairing the long-term utility of a water resource.” A groundwater and surface-water flow (GSFLOW) model was developed for Laurel Hill Creek and calibrated to the measured daily streamflow from 1991 to 2007 for the streamflow-gaging station near the outlet of the basin at Ursina, Pa. The CWPA designation requires an assessment of current and future water use. The calibrated GSFLOW model can be used to assess the hydrologic effects of future changes in water use and land use in the basin.

Analyses of samples collected for surface-water quality during base-flow conditions indicate that the highest nutrient concentrations in the main stem of Laurel Hill Creek were at sites in the northeastern part of the basin where agricultural activity is prominent. All of the total nitrogen (N) and a majority of the total phosphorus (P) concentrations in the main stem exceeded regional nutrient criteria levels of 0.31 and 0.01 milligrams per liter (mg/L), respectively. The highest total N and total P concentrations in the main stem were 1.42 and 0.06 mg/L, respectively. Tributary sites with the highest nutrient concentrations are in subbasins where treated wastewater is discharged, such as Kooser Run and Lost Creek. The highest total N and total P concentrations in subbasins were 3.45 and 0.11 mg/L, respectively. Dissolved chloride and sodium concentrations were highest in the upper part of the basin downstream from Interstate 76 because of road deicing salts. The mean base-flow concentrations of dissolved chloride and sodium were 117 and 77 mg/L, respectively, in samples from the main stem just below Interstate 76, and the mean concentrations in Clear Run were 210 and 118 mg/L, compared to concentrations less than 15 mg/L in tributaries that were not affected by highway runoff. Water quality in forested tributary subbasins underlain by the Allegheny and Pottsville Formations was influenced by acidic precipitation and, to a lesser extent, the underlying geology as indicated by pH values less than 5.0 and corresponding specific conductance ranging from 26 to 288 microsiemens per centimeter at 25 degrees Celsius for some samples; in contrast, pH values for main stem sites ranged from 6.6 to 8.5. Manganese (Mn) was the only dissolved constituent in the surface-water samples that exceeded the secondary maximum contaminant level (SMCL). More than one-half the samples from the main stem had Mn concentrations exceeding the SMCL level of 50 micrograms per liter (μg/L), whereas only 19 percent of samples from tributaries exceeded the SMCL for Mn.

Stream temperatures along the main stem of Laurel Hill Creek became higher moving downstream. During the summer months of June through August, the daily mean temperatures at the five sites exceeded the limit of 18.9 degrees Celsius (°C) for a cold-water fishery. The maximum instantaneous values for each site ranged from 27.2 to 32.8 °C.

Water-quality samples collected at groundwater sites (wells and springs) indicate that wells developed within the Mauch Chunk Formation had the best water quality, whereas wells developed within the Allegheny and Pottsville Formations yielded the poorest water quality. Waters from the Mauch Chunk Formation had the highest median pH (7.6) and alkalinity (80 mg/L calcium carbonate) values. The lowest pH and alkalinity median values were in waters from the Allegheny and Pottsville Formations. Groundwater samples collected from wells in the Allegheny and Pottsville Formations also had the highest concentrations of dissolved iron (Fe) and dissolved Mn. Seventy-eight percent of the groundwater samples collected from the Allegheny Formation exceeded the SMCL of 300 μg/L for Fe and 50 μg/L for Mn. Forty-three and 62 percent of the groundwater samples collected from the Pottsville Formation exceeded the SMCL for iron and Mn, respectively. The highest Fe and Mn concentrations for surface waters were measured for tributaries draining the Pottsville Formation. The highest median Fe concentration for tributaries was in samples from streams draining the Allegheny Formation.

During base-flow conditions, the streamflow per unit area along the main stem of Laurel Hill Creek was lowest in the upper parts of the basin [farthest upstream site 0.07 cubic foot per second per square mile (ft3/s/mi2)] and highest (two sites averaging about 0.20 (ft3/s/mi2) immediately downstream from Laurel Hill Lake in the center of the basin. Tributaries with the highest streamflow per unit area were those subbasins that drain the western ridge of the Laurel Hill Creek Basin. The mean streamflow per unit area for tributaries draining areas that extend into the western ridge and draining eastern or central sections was 0.24 and 0.05 ft3/s/mi2, respectively. In general, as the drainage area increased for tributary basins, the streamflow per unit area increased.

Criteria established by the Pennsylvania Department of Environmental Protection indicate that the safe yield of water withdrawals from the Laurel Hill Creek Basin is 1.43 million gallons per day (Mgal/d). Water-use data for 2009 indicate that net (water withdrawals subtracted by water discharges) water withdrawals from groundwater and surface-water sources in the basin were approximately 1.93 Mgal/d. Water withdrawals were concentrated in the upper part of the basin with approximately 80 percent of the withdrawals occurring in the upper 36 mi2 of the basin. Three subbasins—Allen Creek, Kooser Run, and Shafer Run— in the upper part were affected the most by water withdrawals such that safe yields were exceeded by more than 1,000 percent in the first two and more than 500 percent in the other. In the subbasin of Shafer Run, intermittent streamflow characterizes sections that historically have been perennial.

The GSFLOW model of the Laurel Hill Creek Basin is a simple one-layer representation of the groundwater flow system. The GSFLOW model was primarily calibrated to reduce the error term associated with base-flow periods. The total amount of observed streamflow at the Laurel Hill Creek at Ursina, Pa. streamflow-gaging station and the simulated streamflow were within 0.1 percent over the entire modeled period; however, annual differences between simulated and observed streamflow showed a range of -27 to 24 percent from 1992 to 2007 with nine of the years having less than a 10-percent difference. The primary source of simulated streamflow in the GSFLOW model was the subsurface (interflow; 62 percent), followed by groundwater (25 percent) and surface runoff (13 percent). Most of the simulated subsurface flow that reached the stream was in the form of slow flow as opposed to preferential (fast) interflow.

Coastal habitat and biological community response to dam removal on the Elwha River

Released July 10, 2017 00:00 EST

2017, Ecological Monographs

Melissa M. Foley, Jonathan A. Warrick, Andrew C. Ritchie, Andrew Stevens, Patrick B. Shafroth, Jeff Duda, Matthew M. Beirne, Rebecca Paradis, Guy R. Gelfenbaum, Randall McCoy, Erin S. Cubley

Habitat diversity and heterogeneity play a fundamental role in structuring ecological communities. Dam emplacement and removal can fundamentally alter habitat characteristics, which in turn can affect associated biological communities. Beginning in the early 1900s, the Elwha and Glines Canyon dams in Washington, USA, withheld an estimated 30 million tonnes of sediment from river, coastal, and nearshore habitats. During the staged removal of these dams—the largest dam removal project in history—over 14 million tonnes of sediment were released from the former reservoirs. Our interdisciplinary study in coastal habitats—the first of its kind—shows how the physical changes to the river delta and estuary habitats during dam removal were linked to responses in biological communities. Sediment released during dam removal resulted in over a meter of sedimentation in the estuary and over 400 m of expansion of the river mouth delta landform. These changes increased the amount of supratidal and intertidal habitat, but also reduced the influx of seawater into the pre-removal estuary complex. The effects of these geomorphic and hydrologic changes cascaded to biological systems, reducing the abundance of macroinvertebrates and fish in the estuary and shifting community composition from brackish to freshwater-dominated species. Vegetation did not significantly change on the delta, but pioneer vegetation increased during dam removal, coinciding with the addition of newly available habitat. Understanding how coastal habitats respond to large-scale human stressors—and in some cases the removal of those stressors—is increasingly important as human uses and restoration activities increase in these habitats.

Increased Arctic sea ice drift alters adult female polar bear movements and energetics

Released July 10, 2017 00:00 EST

2017, Global Change Biology

George M. Durner, David C. Douglas, Shannon Albeke, John Whiteman, Steven C. Amstrup, Evan Richardson, Ryan R. Wilson, Merav Ben-David

Recent reductions in thickness and extent have increased drift rates of Arctic sea ice. Increased ice drift could significantly affect the movements and the energy balance of polar bears (Ursus maritimus) which forage, nearly exclusively, on this substrate. We used radio-tracking and ice drift data to quantify the influence of increased drift on bear movements, and we modeled the consequences for energy demands of adult females in the Beaufort and Chukchi seas during two periods with different sea ice characteristics. Westward and northward drift of the sea ice used by polar bears in both regions increased between 1987–1998 and 1999–2013. To remain within their home ranges, polar bears responded to the higher westward ice drift with greater eastward movements, while their movements north in the spring and south in fall were frequently aided by ice motion. To compensate for more rapid westward ice drift in recent years, polar bears covered greater daily distances either by increasing their time spent active (7.6%–9.6%) or by increasing their travel speed (8.5%–8.9%). This increased their calculated annual energy expenditure by 1.8%–3.6% (depending on region and reproductive status), a cost that could be met by capturing an additional 1–3 seals/year. Polar bears selected similar habitats in both periods, indicating that faster drift did not alter habitat preferences. Compounding reduced foraging opportunities that result from habitat loss; changes in ice drift, and associated activity increases, likely exacerbate the physiological stress experienced by polar bears in a warming Arctic.

Examples of storm impacts on barrier islands: Chapter 4

Released July 10, 2017 00:00 EST

2017, Book chapter, Coastal storms: Processes and impacts

Nathaniel G. Plant, Kara Doran, Hilary F. Stockdon

This chapter focuses on the morphologic variability of barrier islands and on the differences in storm response. It describes different types of barrier island response to individual storms, as well as the integrated response of barrier islands to many storms. The chapter considers case study on the Chandeleur Island chain, where a decadal time series of island elevation measurements have documented a wide range of barrier island responses to storms and long-term processes that are representative of barrier island behaviour at many other locations. These islands are low elevation, extremely vulnerable to storms and exhibit a diversity of storm responses. Additionally, this location experiences a moderately high rate of relative sea-level rise, increasing its vulnerability to the combined impacts of storms and long-term erosional processes. Understanding how natural processes, including storm impacts and intervening recovery periods interact with man-made restoration processes is also broadly relevant to understand the natural and human response to future storms.

Thermal regimes of Rocky Mountain lakes warm with climate change

Released July 10, 2017 00:00 EST

2017, PLoS ONE (12) 1-17

James J. Roberts, Kurt D. Fausch, Travis S. Schmidt, David M. Walters

Anthropogenic climate change is causing a wide range of stresses in aquatic ecosystems, primarily through warming thermal conditions. Lakes, in response to these changes, are experiencing increases in both summer temperatures and ice-free days. We used continuous records of lake surface temperature and air temperature to create statistical models of daily mean lake surface temperature to assess thermal changes in mountain lakes. These models were combined with downscaled climate projections to predict future thermal conditions for 27 high-elevation lakes in the southern Rocky Mountains. The models predict a 0.25°C·decade-1increase in mean annual lake surface temperature through the 2080s, which is greater than warming rates of streams in this region. Most striking is that on average, ice-free days are predicted to increase by 5.9 days ·decade-1, and summer mean lake surface temperature is predicted to increase by 0.47°C·decade-1. Both could profoundly alter the length of the growing season and potentially change the structure and function of mountain lake ecosystems. These results highlight the changes expected of mountain lakes and stress the importance of incorporating climate-related adaptive strategies in the development of resource management plans.

The application of microtextural and heavy mineral analysis to discriminate between storm and tsunami deposits

Released July 10, 2017 00:00 EST

2017, Geological Society, London, Special Publications (456)

Pedro J.M. Costa, Guy R. Gelfenbaum, Sue Dawson, Seanpaul La selle, F Milne, J. Cascalho, C. Ponte Lira, C. Andrade, M. C. Freitas, Bruce E. Jaffe

Recent work has applied microtextural and heavy mineral analyses to sandy storm and tsunami deposits from Portugal, Scotland, Indonesia and the USA. We looked at the interpretation of microtextural imagery (scanning electron microscopy) of quartz grains and heavy mineral compositions. We consider inundation events of different chronologies and sources (the AD 1755 Lisbon and 2004 Indian Ocean tsunamis, the Great Storm of 11 January 2005 in Scotland, and Hurricane Sandy in 2012) that affected contrasting coastal and hinterland settings with different regional oceanographic conditions. Storm and tsunami deposits were examined along with potential source sediments (alluvial, beach, dune and nearshore sediments) to determine provenance.

Results suggest that tsunami deposits typically exhibit a significant spatial variation in grain sizes, microtextures and heavy minerals. Storm deposits show less variability, especially in vertical profiles. Tsunami and storm quartz grains had more percussion marks and fresh surfaces compared to potential source material. Moreover, in the studied cases, tsunami samples had fewer fresh surfaces than storm deposits.

Heavy mineral assemblages are typically site-specific. The concentration of heavy minerals decreases upwards in tsunamigenic units, whereas storm sediments show cyclic concentrations of heavy minerals, reflected in the laminations observed macroscopically in the deposits.

Spatio-temporal evolution of the 2011 Prague, Oklahoma aftershock sequence revealed using subspace detection and relocation

Released July 10, 2017 00:00 EST

2017, Geophysical Research Letters

Nicole D McMahon, Richard C. Aster, William Yeck, Daniel E. McNamara, Harley M. Benz

The 6 November 2011 Mw 5.7 earthquake near Prague, Oklahoma is the second largest earthquake ever recorded in the state. A Mw 4.8 foreshock and the Mw 5.7 mainshock triggered a prolific aftershock sequence. Utilizing a subspace detection method, we increase by fivefold the number of precisely located events between 4 November and 5 December 2011. We find that while most aftershock energy is released in the crystalline basement, a significant number of the events occur in the overlying Arbuckle Group, indicating that active Meeker-Prague faulting extends into the sedimentary zone of wastewater disposal. Although the number of aftershocks in the Arbuckle Group is large, comprising ~40% of the aftershock catalog, the moment contribution of Arbuckle Group earthquakes is much less than 1% of the total aftershock moment budget. Aftershock locations are sparse in patches that experienced large slip during the mainshock.

Long-term video surveillance and automated analyses of hibernating bats in Virginia and Indiana, winters 2011-2014.

Released July 10, 2017 00:00 EST

2017, Dataset

David T.S. Hayman, Paul Cryan, Paul D. Fricker, Nicholas G. Dannemiller

This data release includes video files and image-processing results used to conduct the analyses of hibernation patterns in groups of bats reported by Hayman et al. (2017), "Long-term video surveillance and automated analyses reveal arousal patterns in groups of hibernating bats.”  Thermal-imaging surveillance video cameras were used to observe little brown bats (Myotis lucifugus) in a cave in Virginia and Indiana bats (M. sodalis) in a cave in Indiana during three winters between 2011 and 2014.  There are 740 video files used for analysis (‘Analysis videos’), organized into 7 folders by state/site and winter.  Total size of the video data set is 14.1 gigabytes.  Each video file in this analysis set represents one 24-hour period of observation, time-lapsed at a rate of one frame per 30 seconds of real time (video plays at 30 frames per second).  A folder of illustrative videos is also included, which shows all of the analysis days for one winter of monitoring merged into a single video clip, time-lapsed at a rate of one frame per two hours of real time.  The associated image-processing results are included in 7 data files, each representing computer derived values of mean pixel intensity in every 10th frame of the 740 time-lapsed video files, concatenated by site and winter of observation.  Details on the format of these data, as well as how they were processed and derived are included in Hayman et al. (2017) and with the project metadata on Science Base.

Hayman, DTS, Cryan PM, Fricker PD, Dannemiller NG. 2017. Long-term video surveillance and automated analyses reveal arousal patterns in groups of hibernating bats. Methods Ecol Evol. 2017;00:1-9. https://doi.org/10.1111/2041-210X.12823

Geologic map of the northern White Hills, Mohave County, Arizona

Released July 10, 2017 00:00 EST

2017, Scientific Investigations Map 3372

Keith A. Howard, Susan S. Priest, Scott C. Lundstrom, Debra L. Block

Introduction

The northern White Hills map area lies within the Kingman Uplift, a regional structural high in which Tertiary rocks lie directly on Proterozoic rocks as a result of Cretaceous orogenic uplift and erosional stripping of Paleozoic and Mesozoic strata. The Miocene Salt Spring Fault forms the major structural boundary in the map area. This low-angle normal fault separates a footwall (lower plate) of Proterozoic gneisses on the east and south from a hanging wall (upper plate) of faulted middle Miocene volcanic and sedimentary rocks and their Proterozoic substrate. The fault is part of the South Virgin–White Hills Detachment Fault, which records significant tectonic extension that decreases from north to south. Along most of its trace, the Salt Spring Fault dips gently westward, but it also has north-dipping segments along salients. A dissected, domelike landscape on the eroded footwall, which contains antiformal salients and synformal reentrants, extends through the map area from Salt Spring Bay southward to the Golden Rule Peak area. The “Lost Basin Range” represents an upthrown block of the footwall, raised on the steeper Lost Basin Range Fault.

The Salt Spring Fault, as well as the normal faults that segment its hanging wall, deform rocks that are about 16 to 10 Ma, and younger deposits overlie the faults. Rhyodacitic welded tuff about 15 Ma underlies a succession of geochemically intermediate to progressively more mafic lavas (including alkali basalt) that range from about 14.7 to 8 Ma, interfingered with sedimentary rocks and breccias in the western part of the map area. Upper Miocene strata record further filling of the extension-formed continental basins. Basins that are still present in the modern landscape reflect the youngest stages of extensional-basin formation, expressed as the downfaulted Detrital Valley and Hualapai Wash basins in the western and eastern parts of the map area, respectively, as well as the north-centrally located, northward-sagged Temple Basin. Pliocene fluvial and piedmont alluvial fan deposits record postextensional basin incision, refilling, and reincision driven by the inception and evolution of the westward-flowing Colorado River, centered north of the map area.

Reassessing rainfall in the Luquillo Mountains, Puerto Rico: Local and global ecohydrological implications

Released July 07, 2017 00:00 EST

2017, PLoS ONE (12) 1-26

Sheila F. Murphy, Robert F. Stallard, Martha A. Scholl, Grizelle Gonzalez, Angel J. Torres-Sanchez

Mountains receive a greater proportion of precipitation than other environments, and thus make a disproportionate contribution to the world’s water supply. The Luquillo Mountains receive the highest rainfall on the island of Puerto Rico and serve as a critical source of water to surrounding communities. The area’s role as a long-term research site has generated numerous hydrological, ecological, and geological investigations that have been included in regional and global overviews that compare tropical forests to other ecosystems. Most of the forest- and watershed-wide estimates of precipitation (and evapotranspiration, as inferred by a water balance) have assumed that precipitation increases consistently with elevation. However, in this new analysis of all known current and historical rain gages in the region, we find that similar to other mountainous islands in the trade wind latitudes, leeward (western) watersheds in the Luquillo Mountains receive lower mean annual precipitation than windward (eastern) watersheds. Previous studies in the Luquillo Mountains have therefore overestimated precipitation in leeward watersheds by up to 40%. The Icacos watershed, however, despite being located at elevations 200–400 m below the tallest peaks and to the lee of the first major orographic barrier, receives some of the highest precipitation. Such lee-side enhancement has been observed in other island mountains of similar height and width, and may be caused by several mechanisms. Thus, the long-reported discrepancy of unrealistically low rates of evapotranspiration in the Icacos watershed is likely caused by previous underestimation of precipitation, perhaps by as much as 20%. Rainfall/runoff ratios in several previous studies suggested either runoff excess or runoff deficiency in Luquillo watersheds, but this analysis suggests that in fact they are similar to other tropical watersheds. Because the Luquillo Mountains often serve as a wet tropical archetype in global assessments of basic ecohydrological processes, these revised estimates are relevant to regional and global assessments of runoff efficiency, hydrologic effects of reforestation, geomorphic processes, and climate change.

Mapping burned areas using dense time-series of Landsat data

Released July 07, 2017 00:00 EST

2017, Remote Sensing of Environment (198) 504-522

Todd J. Hawbaker, Melanie Vanderhoof, Yen-Ju G. Beal, Joshua Takacs, Gail L. Schmidt, Jeff T. Falgout, Brad Williams, Nicole M. Brunner, Megan K. Caldwell, Joshua J. Picotte, Stephen M. Howard, Susan Stitt, John L. Dwyer

Complete and accurate burned area data are needed to document patterns of fires, to quantify relationships between the patterns and drivers of fire occurrence, and to assess the impacts of fires on human and natural systems. Unfortunately, in many areas existing fire occurrence datasets are known to be incomplete. Consequently, the need to systematically collect burned area information has been recognized by the United Nations Framework Convention on Climate Change and the Intergovernmental Panel on Climate Change, which have both called for the production of essential climate variables (ECVs), including information about burned area. In this paper, we present an algorithm that identifies burned areas in dense time-series of Landsat data to produce the Landsat Burned Area Essential Climate Variable (BAECV) products. The algorithm uses gradient boosted regression models to generate burn probability surfaces using band values and spectral indices from individual Landsat scenes, lagged reference conditions, and change metrics between the scene and reference predictors. Burn classifications are generated from the burn probability surfaces using pixel-level thresholding in combination with a region growing process. The algorithm can be applied anywhere Landsat and training data are available. For this study, BAECV products were generated for the conterminous United States from 1984 through 2015. These products consist of pixel-level burn probabilities for each Landsat scene, in addition to, annual composites including: the maximum burn probability and a burn classification. We compared the BAECV burn classification products to the existing Global Fire Emissions Database (GFED; 1997–2015) and Monitoring Trends in Burn Severity (MTBS; 1984–2013) data. We found that the BAECV products mapped 36% more burned area than the GFED and 116% more burned area than MTBS. Differences between the BAECV products and the GFED were especially high in the West and East where the BAECV products mapped 32% and 88% more burned area, respectively. However, the BAECV products found less burned area than the GFED in regions with frequent agricultural fires. Compared to the MTBS data, the BAECV products identified 31% more burned area in the West, 312% more in the Great Plains, and 233% more in the East. Most pixels in the MTBS data were detected by the BAECV, regardless of burn severity. The BAECV products document patterns of fire similar to those in the GFED but also showed patterns of fire that are not well characterized by the existing MTBS data. We anticipate the BAECV products will be useful to studies that seek to understand past patterns of fire occurrence, the drivers that created them, and the impacts fires have on natural and human systems.

Long-term video surveillance and automated analyses reveal arousal patterns in groups of hibernating bats

Released July 07, 2017 00:00 EST

2017, Methods in Ecology and Evolution

David T.S. Hayman, Paul Cryan, Paul D. Fricker, Nicholas G. Dannemiller

  1. Understanding natural behaviours is essential to determining how animals deal with new threats (e.g. emerging diseases). However, natural behaviours of animals with cryptic lifestyles, like hibernating bats, are often poorly characterized. White-nose syndrome (WNS) is an unprecedented disease threatening multiple species of hibernating bats, and pathogen-induced changes to host behaviour may contribute to mortality. To better understand the behaviours of hibernating bats and how they might relate to WNS, we developed new ways of studying hibernation across entire seasons.
  2. We used thermal-imaging video surveillance cameras to observe little brown bats (Myotis lucifugus) and Indiana bats (M. sodalis) in two caves over multiple winters. We developed new, sharable software to test for autocorrelation and periodicity of arousal signals in recorded video.
  3. We processed 740 days (17,760 hr) of video at a rate of >1,000 hr of video imagery in less than 1 hr using a desktop computer with sufficient resolution to detect increases in arousals during midwinter in both species and clear signals of daily arousal periodicity in infected M. sodalis.
  4. Our unexpected finding of periodic synchronous group arousals in hibernating bats demonstrate the potential for video methods and suggest some bats may have innate behavioural strategies for coping with WNS. Surveillance video and accessible analysis software make it now practical to investigate long-term behaviours of hibernating bats and other hard-to-study animals.

Assessing welfare of individual sirenians in the wild and in captivity

Released July 07, 2017 00:00 EST

2017, Book chapter, Marine mammal welfare

Mark Flint, Robert K. Bonde

Assessing the welfare of wild populations of sirenians has required a “generalist” approach. The outcome has been a subjective decision as to whether what the observers are witnessing in an individual or group of animals is normal and whether that has positive or negative consequences. The understanding of sirenian welfare requirements, and a decision process for whether to support and maintain their natural habitats or to try to replicate it in a meaningful way in an artificial captive setting, is still in its early developmental stages and has dynamic qualities that are in need of urgent attention. In this chapter we use the knowledge and observations presented throughout the chapters on sirenians to outline a proposed standard approach for assessing welfare in individuals in wild populations, as well as guidelines for assessing captive groups of dugongs and manatees. In the wild, the suitability of the habitat and human impact on it, the limitations of carrying capacity, the dynamics of ecosystems, and the effects that the immediate environment will have on the known resident populations are examined. In captivity, we use the foundation of the Five Freedoms, based on experience derived from other captive species, and we combine this with experience from rehabilitating manatees in Europe and the United States and, more recently, dugongs in the Indo-Pacific, to identify requirements and to help us to assess the unique needs of these species when held in facilities. We present considerations and approaches to (1) holistically assess captive facilities and to assess the well-being of the individuals held in the facility, (2) derive a guideline for standard captive assessment, (3) determine if adequate welfare needs for the animals are being met, and (4) help to provide guidance on whether an animal is suitable for release after rehabilitation.

Human interactions with sirenians (manatees and dugongs)

Released July 07, 2017 00:00 EST

2017, Book chapter, Marine mammal welfare

Robert K. Bonde, Mark Flint

There are three extant sirenian species of the Trichechidae family and one living Dugongidae family member. Given their close ties to coastal and often urbanized habitats, sirenians are exposed to many types of anthropogenic activities that result in challenges to their well-being, poor health, and even death. In the wild, they are exposed to direct and indirect local pressures as well as subject to large-scale stressors such as global climate change acting on regions or entire genetic stocks. In captivity, they are subject to husbandry and management practices based on our collective knowledge, or in some cases lack thereof, of their needs and welfare. It is therefore reasonable to consider that their current imperiled status is very closely linked to our actions. In this chapter, we identify and define human interactions that may impact dugongs and manatees, including hunting, fisheries, boat interactions, negative interactions with man-made structures, disease and contaminants, and global climate change. We examine techniques used to investigate these impacts and the influence of sirenian biology and of changing human behaviors on potential outcomes. We examine how this differs for dugongs and manatees in the wild and for those held in captivity. Finally, we provide possible mitigation strategies and ways to assess the efforts we are making to improve the welfare of individuals and to conserve these species. This chapter identifies how the welfare of these species is intrinsically linked to the human interactions these animals experience, and how the nature of these interactions has changed with societal shifts. We proffer suggested ways to minimize negative impacts. Current knowledge should be used to minimize negative human interactions and impacts, to promote positive impacts, and to protect these animals for the future.

Factors affecting marsh vegetation at the Liberty Island Conservation Bank in the Cache Slough region of the Sacramento–San Joaquin Delta, California

Released July 07, 2017 00:00 EST

2017, Open-File Report 2017-1077

James L. Orlando, Judith Z. Drexler

The Liberty Island Conservation Bank (LICB) is a tidal freshwater marsh restored for the purpose of mitigating adverse effects on sensitive fish populations elsewhere in the region. The LICB was completed in 2012 and is in the northern Cache Slough region of the Sacramento–San Joaquin Delta. The wetland vegetation at the LICB is stunted and yellow-green in color (chlorotic) compared to nearby wetlands. A study was done to investigate three potential causes of the stunted and chlorotic vegetation: (1) improper grading of the marsh plain, (2) pesticide contamination from agricultural and urban inputs upstream from the site, (3) nitrogen-deficient soil, or some combination of these. Water samples were collected from channels at five sites, and soil samples were collected from four wetlands, including the LICB, during the summer of 2015. Real-time kinematic global positioning system (RTK-GPS) elevation surveys were completed at the LICB and north Little Holland Tract, a closely situated natural marsh that has similar hydrodynamics as the LICB, but contains healthy marsh vegetation.

The results showed no significant differences in carbon or nitrogen content in the surface soils or in pesticides in water among the sites. The elevation survey indicated that the mean elevation of the LICB was about 26 centimeters higher than that of the north Little Holland Tract marsh. Because marsh plain elevation largely determines the hydroperiod of a marsh, these results indicated that the LICB has a hydroperiod that differs from that of neighboring north Little Holland Tract marsh. This difference in hydroperiod contributed to the lower stature and decreased vigor of wetland vegetation at the LICB. Although the LICB cannot be regraded without great expense, it could be possible to reduce the sharp angle of the marsh edge to facilitate deeper and more frequent tidal flooding along the marsh periphery. Establishing optimal elevations for restored wetlands is necessary for obtaining the full suite of ecosystem services provided by tidal wetlands. A better system of tidal benchmarks throughout the delta is needed to help restoration practitioners correctly grade the elevation of newly restored wetlands.

A 184-year record of river meander migration from tree rings, aerial imagery, and cross sections

Released July 06, 2017 00:00 EST

2017, Geomorphology (293) 227-239

Derek M. Schook, Sara L. Rathburn, Jonathan M. Friedman, J. Marshall Wolf

Channel migration is the primary mechanism of floodplain turnover in meandering rivers and is essential to the persistence of riparian ecosystems. Channel migration is driven by river flows, but short-term records cannot disentangle the effects of land use, flow diversion, past floods, and climate change. We used three data sets to quantify nearly two centuries of channel migration on the Powder River in Montana. The most precise data set came from channel cross sections measured an average of 21 times from 1975 to 2014. We then extended spatial and temporal scales of analysis using aerial photographs (1939–2013) and by aging plains cottonwoods along transects (1830–2014). Migration rates calculated from overlapping periods across data sets mostly revealed cross-method consistency. Data set integration revealed that migration rates have declined since peaking at 5 m/year in the two decades after the extreme 1923 flood (3000 m3/s). Averaged over the duration of each data set, cross section channel migration occurred at 0.81 m/year, compared to 1.52 m/year for the medium-length air photo record and 1.62 m/year for the lengthy cottonwood record. Powder River peak annual flows decreased by 48% (201 vs. 104 m3/s) after the largest flood of the post-1930 gaged record (930 m3/s in 1978). Declining peak discharges led to a 53% reduction in channel width and a 29% increase in sinuosity over the 1939–2013 air photo record. Changes in planform geometry and reductions in channel migration make calculations of floodplain turnover rates dependent on the period of analysis. We found that the intensively studied last four decades do not represent the past two centuries

Used-habitat calibration plots: A new procedure for validating species distribution, resource selection, and step-selection models

Released July 06, 2017 00:00 EST

2017, Ecography

John R. Fieberg, James D. Forester, Garrett M. Street, Douglas H. Johnson, Althea A. ArchMiller, Jason Matthiopoulos

“Species distribution modeling” was recently ranked as one of the top five “research fronts” in ecology and the environmental sciences by ISI's Essential Science Indicators (Renner and Warton 2013), reflecting the importance of predicting how species distributions will respond to anthropogenic change. Unfortunately, species distribution models (SDMs) often perform poorly when applied to novel environments. Compounding on this problem is the shortage of methods for evaluating SDMs (hence, we may be getting our predictions wrong and not even know it). Traditional methods for validating SDMs quantify a model's ability to classify locations as used or unused. Instead, we propose to focus on how well SDMs can predict the characteristics of used locations. This subtle shift in viewpoint leads to a more natural and informative evaluation and validation of models across the entire spectrum of SDMs. Through a series of examples, we show how simple graphical methods can help with three fundamental challenges of habitat modeling: identifying missing covariates, non-linearity, and multicollinearity. Identifying habitat characteristics that are not well-predicted by the model can provide insights into variables affecting the distribution of species, suggest appropriate model modifications, and ultimately improve the reliability and generality of conservation and management recommendations.

Trimming a hazard logic tree with a new model-order-reduction technique

Released July 06, 2017 00:00 EST

2017, Earthquake Spectra

Keith Porter, Ned Field, Kevin R Milner

The size of the logic tree within the Uniform California Earthquake Rupture Forecast Version 3, Time-Dependent (UCERF3-TD) model can challenge risk analyses of large portfolios. An insurer or catastrophe risk modeler concerned with losses to a California portfolio might have to evaluate a portfolio 57,600 times to estimate risk in light of the hazard possibility space. Which branches of the logic tree matter most, and which can one ignore? We employed two model-order-reduction techniques to simplify the model. We sought a subset of parameters that must vary, and the specific fixed values for the remaining parameters, to produce approximately the same loss distribution as the original model. The techniques are (1) a tornado-diagram approach we employed previously for UCERF2, and (2) an apparently novel probabilistic sensitivity approach that seems better suited to functions of nominal random variables. The new approach produces a reduced-order model with only 60 of the original 57,600 leaves. One can use the results to reduce computational effort in loss analyses by orders of magnitude.

Middle and Late Pleistocene glaciations in the southwestern Pamir and their effects on topography

Released July 06, 2017 00:00 EST

2017, Earth and Planetary Science Letters (466) 181-194

Konstanze Stubner, Elena Grin, Alan J. Hidy, Mirjam Schaller, Ryan D. Gold, Lothar Ratschbacher, Todd Ehlers

Glacial chronologies provide insight into the evolution of paleo-landscapes, paleoclimate, topography, and the erosion processes that shape mountain ranges. In the Pamir of Central Asia, glacial morphologies and deposits indicate extensive past glaciations, whose timing and extent remain poorly constrained. Geomorphic data and 15 new 10Be exposure ages from moraine boulders and roches moutonnées in the southwestern Pamir document multiple Pleistocene glacial stages. The oldest exposure ages, View the MathML source, underestimate the age of the earliest preserved glacial advance and imply that the modern relief of the southwestern Pamir (peaks at ∼5000–6000 m a.s.l.; valleys at ∼2000–3000 m a.s.l.) already existed in the late Middle Pleistocene. Younger exposure ages (∼40–80 ka, ∼30 ka) complement the existing Central Asian glacial chronology and reflect successively less extensive Late Pleistocene glaciations. The topography of the Pamir and the glacial chronologies suggest that, in the Middle Pleistocene, an ice cap or ice field occupied the eastern Pamir high-altitude plateau, whereas westward flowing valley glaciers incised the southwestern Pamir. Since the Late Pleistocene deglaciation, the rivers of the southwestern Pamir adjusted to the glacially shaped landscape. Localized rapid fluvial incision and drainage network reorganization reflect the transient nature of the deglaciated landscape.

Using mineral geochemistry to decipher slab, mantle, and crustal input in the generation of high-Mg andesites and basaltic andesites from the northern Cascade Arc

Released July 06, 2017 00:00 EST

2017, American Mineralogist (102) 948-965

May Sas, Susan DeBari, Michael A. Clynne, Brian G. Rusk

To better understand the role of slab melt in the petrogenesis of North Cascades magmas, this study focuses on petrogenesis of high-Mg lavas from the two northernmost active volcanoes in Washington. High-Mg andesites (HMA) and basaltic andesites (HMBA) in the Cascade Arc have high Mg# [molar Mg/(Mg+Fe2+)] relative to their SiO2 contents, elevated Nd/Yb, and are Ni- and Cr-enriched. The rock units examined here include the Tarn Plateau HMBA (51.8–54.0 wt% SiO2, Mg# 68–70) and Glacier Creek HMA (58.3–58.7 wt% SiO2, Mg# 63–64) from the Mount Baker Volcanic Field, and the Lightning Creek HMBA (54.8–54.6 SiO2, Mg# 69–73) from Glacier Peak. This study combines major and trace element compositions of minerals and whole rocks to test several petrogenetic hypotheses and to determine which, if any, are applicable to North Cascades HMA and HMBA. In the Tarn Plateau HMBA, rare earth element (REE) equilibrium liquids calculated from clinopyroxene compositions have high Nd/Yb that positively correlates with Mg#. This correlation suggests an origin similar to that proposed for Aleutian adakites, where intermediate, high Nd/Yb slab-derived melts interact with the overlying mantle to become Mg-rich, and subsequently mix with low Nd/Yb, mantle-derived mafic magmas with lower Mg#. In the Glacier Creek HMA, elevated whole-rock MgO and SiO2 contents resulted from accumulation of xenocrystic olivine and differentiation processes, respectively, but the cause of high Nd/Yb is less clear. However, high whole-rock Sr/P (fluid mobile/fluid immobile) values indicate a mantle source that was fluxed by an enriched, hydrous slab component, likely producing the observed high Nd/Yb REE signature. The Lightning Creek HMBA is a hybridized rock unit with at least three identifiable magmatic components, but only one of which has HMA characteristics. Cr and Mg contents in Cr-spinel and olivine pairs in this HMA component suggest that its source is a strongly depleted mantle, and high whole-rock Sr/P values indicate mantle melting that was induced through hydration, likely adding the component responsible for the observed high Nd/Yb REE pattern. The elevated SiO2 contents (54.6 wt%) of the HMA component resulted from differentiation or high degrees of partial melting of ultramafic material through the addition of H2O. Therefore the Lightning Creek HMBA is interpreted to have originated from a refractory mantle source that underwent melting through interaction with an enriched slab component. Our results indicate that in addition to slab-derived fluids, slab-derived melts also have an important role in the production of HMA and HMBA in the north Cascade Arc.

Quantifying the heterogeneity of the tectonic stress field using borehole data

Released July 06, 2017 00:00 EST

2017, Journal of Geophysical Research B: Solid Earth

Martin Schoenball, Nicholas C. Davatzes

The heterogeneity of the tectonic stress field is a fundamental property which influences earthquake dynamics and subsurface engineering. Self-similar scaling of stress heterogeneities is frequently assumed to explain characteristics of earthquakes such as the magnitude-frequency relation. However, observational evidence for such scaling of the stress field heterogeneity is scarce.

We analyze the local stress orientations using image logs of two closely spaced boreholes in the Coso Geothermal Field with sub-vertical and deviated trajectories, respectively, each spanning about 2 km in depth. Both the mean and the standard deviation of stress orientation indicators (borehole breakouts, drilling-induced fractures and petal-centerline fractures) determined from each borehole agree to the limit of the resolution of our method although measurements at specific depths may not. We find that the standard deviation in these boreholes strongly depends on the interval length analyzed, generally increasing up to a wellbore log length of about 600 m and constant for longer intervals. We find the same behavior in global data from the World Stress Map. This suggests that the standard deviation of stress indicators characterizes the heterogeneity of the tectonic stress field rather than the quality of the stress measurement. A large standard deviation of a stress measurement might be an expression of strong crustal heterogeneity rather than of an unreliable stress determination. Robust characterization of stress heterogeneity requires logs that sample stress indicators along a representative sample volume of at least 1 km.

Sediment gravity flows triggered by remotely generated earthquake waves

Released July 06, 2017 00:00 EST

2017, Journal of Geophysical Research B: Solid Earth

H. Paul Johnson, Joan S. Gomberg, Susan Hautala, Marie Salmi

Recent great earthquakes and tsunamis around the world have heightened awareness of the inevitability of similar events occurring within the Cascadia Subduction Zone of the Pacific Northwest. We analyzed seafloor temperature, pressure, and seismic signals, and video stills of sediment-enveloped instruments recorded during the 2011–2015 Cascadia Initiative experiment, and seafloor morphology. Our results led us to suggest that thick accretionary prism sediments amplified and extended seismic wave durations from the 11 April 2012 Mw8.6 Indian Ocean earthquake, located more than 13,500 km away. These waves triggered a sequence of small slope failures on the Cascadia margin that led to sediment gravity flows culminating in turbidity currents. Previous studies have related the triggering of sediment-laden gravity flows and turbidite deposition to local earthquakes, but this is the first study in which the originating seismic event is extremely distant (> 10,000 km). The possibility of remotely triggered slope failures that generate sediment-laden gravity flows should be considered in inferences of recurrence intervals of past great Cascadia earthquakes from turbidite sequences. Future similar studies may provide new understanding of submarine slope failures and turbidity currents and the hazards they pose to seafloor infrastructure and tsunami generation in regions both with and without local earthquakes.

Sparrow nest survival in relation to prescribed fire and woody plant invasion in a northern mixed-grass prairie

Released July 06, 2017 00:00 EST

2017, Wildlife Society Bulletin

Robert K. Murphy, Terry L. Shaffer, Todd A. Grant, James L. Derrig, Cory S. Rubin, Courtney K. Kerns

Prescribed fire is used to reverse invasion by woody vegetation on grasslands, but managers often are uncertain whether influences of shrub and tree reduction outweigh potential effects of fire on nest survival of grassland birds. During the 2001–2003 breeding seasons, we examined relationships of prescribed fire and woody vegetation to nest survival of clay-colored sparrow (Spizella pallida) and Savannah sparrow (Passerculus sandwichensis) in mixed-grass prairie at Des Lacs National Wildlife Refuge in northwestern North Dakota, USA. We assessed relationships of nest survival to 1) recent fire history, in terms of number of breeding seasons (2, 3, or 4–5) since the last prescribed fire, and 2) prevalence of trees and tall (>1.5 m) shrubs in the landscape and of low (≤1.5 m) shrubs within 5 m of nests. Nest survival of both species exhibited distinct patterns related to age of the nest and day of year, but bore no relationship to fire history. Survival of clay-colored sparrow nests declined as the amount of trees and tall shrubs within 100 m increased, but we found no relationship to suggest nest parasitism by brown-headed cowbirds (Molothrus ater) as an underlying mechanism. We found little evidence linking nest survival of Savannah sparrow to woody vegetation. Our results suggest that fire can be used to restore northern mixed-grass prairies without adversely affecting nest survival of ≥2 widespread passerine species. Survival of nests of clay-colored sparrow may increase when tall woody cover is reduced by fire. Our data lend support to the use of fire for reducing scattered patches of tall woody cover to enhance survival of nests of ≥1 grassland bird species in northern mixed-grass prairies, but further study is needed that incorporates experimental approaches and assessments of shorter term effects of fire on survival of nests of grassland passerines.

Methods for measuring bird-mediated seed rain: Insights from a Hawaiian mesic forest

Released July 06, 2017 00:00 EST

2017, Pacific Science (71) 287-302

Eli Rose, Meredith Stewart, Andrew Brinkman, Eben Paxton, Stephanie G. Yelenik

Amount and diversity of bird-dispersed seed rain play important roles in determining forest composition, yet neither is easy to quantify. The complex ecological processes that influence seed movement make the best approach highly context specific. Although recent advances in seed rain theory emphasize quantifying source-specific seed shadows, many ecological questions can be addressed u sing a less mechanistic approach that requires fewer assumptions. Using seed rain rates from 0.38 m2 hoop traps sampled twice monthly over the course of a year, we show that number of traps required to identify changes in seed rain varies across seed species and forest type. Detecting a 50% increase in amount of seed rain required from 65 to >300 traps, while detecting a 200% increase generally required ≤⃒50 traps. Trap size and ecological context dictate the number of seeds found in each trap, but the coefficient of variation (CV) across traps in a given ecological context can help inform future studies about number of traps needed to detect change. To better understand factors influencing variation around estimates of seed rain, we simulated both clustered and evenly distributed patterns of fecal deposition using three different levels of seed aggregation (number of seeds in each fecal deposit). When patterns of fecal deposition were clustered, rather than evenly dispersed across the study area, they required >1.5 times the number of traps to identify a 100% increase in seed rain. Similarly, we found that low seed aggregation required >1.5 times the number of traps to detect a 100% change than when aggregation was medium or high. At low aggregations, fewer seed rain traps contained seeds (low, 33 ± 5%; medium, 23 ± 4%; high, 24 ± 5%), resulting in more variation across traps than medium and high aggregations. We also illustrate the importance of training observers to discern between morphologically similar seeds from different species and provide resources to help identify bird-dispersed seeds commonly found within midelevation mesic Hawaiian forests.

Evidence of absence (v2.0) software user guide

Released July 06, 2017 00:00 EST

2017, Data Series 1055

Daniel Dalthorp, Manuela Huso, David Dail

Evidence of Absence software (EoA) is a user-friendly software application for estimating bird and bat fatalities at wind farms and for designing search protocols. The software is particularly useful in addressing whether the number of fatalities is below a given threshold and what search parameters are needed to give assurance that thresholds were not exceeded. The software also includes tools (1) for estimating carcass persistence distributions and searcher efficiency parameters (𝑝 and 𝑘) from field trials, (2) for projecting future mortality based on past monitoring data, and (3) for exploring the potential consequences of various choices in the design of long-term incidental take permits for protected species. The software was designed specifically for cases where tolerance for mortality is low and carcass counts are small or even 0, but the tools also may be used for mortality estimates when carcass counts are large.

Fifty-eighth supplement to the American Ornithologists' Union: Check-list of North American Birds

Released July 05, 2017 00:00 EST

2017, The Auk (134) 751-773

Terry Chesser, Kevin J Burns, Carla Cicero, Jon L. Dunn, Andrew W. Kratter, Irby J. Lovette, Pamela C. Rasmussen, J.V. Remsen Jr., James D. Rising, Douglas F. Stotz, Kevin Winker

This is the 17th supplement since publication of the 7th edition of the Check-list of North American Birds (American Ornithologists' Union [AOU] 1998). It summarizes decisions made between April 15, 2016, and April 15, 2017, by the AOS's Committee on Classification and Nomenclature—North and Middle America. The Committee has continued to operate in the manner outlined in the 42nd Supplement

Historical changes in organic matter input to the muddy sediments along the Zhejiang-Fujian Coast, China over the past 160 years

Released July 05, 2017 00:00 EST

2017, Organic Geochemistry (111) 13-25

Li-lei Chen, Jian Liu, Lei Xing, Ken W. Krauss, Jia-sheng Wang, Gang Xu, Li Li

The burial of sedimentary organic matter (SOM) in the large river-influenced estuarine-coastal regions is affected by hydrodynamic sorting, diagenesis and human activities. Typically, the inner shelf region of the East China Sea is a major carbon sink of the Yangtze River-derived fine-grained sediments. Most of the previous work concentrated on the studies of surface sediments or used a single-proxy in this region. In this study, two cores from the Zhejiang-Fujian Coast were analyzed using bulk (TOC, TN and δ13CTOC) and molecular biomarker (n-alkane, brassicasterol, dinosterol and glycerol dialkyl glycerol tetraether lipids) techniques to clarify the sources, spatiotemporal distribution and fate of SOM in the Yangtze River Estuary and adjacent shelf. Results from this study indicated that the effects of diagenesis and diffusion on different sedimentary biomarkers resulted in overestimation of the relative contribution of terrestrial organic matter (%OMterr), compared with those based on δ13CTOC. The amounts of terrestrial plant organic matter (OMplant) and%OMterr in sediments decreased offshore. In contrast, the amounts of marine organic matter (OMmarine) increased offshore, but closer to the Yangtze River mouth, the amounts of soil organic matter (OMsoil) increased. Moreover, the amounts of TOC, OMplant and OMmarine biomarkers increased, but OMsoil and%OMterrdecreased over time in recent decades. Our study suggests that spatial organic matter distribution patterns in marine shelf sediments were controlled primarily by hydrodynamic sorting and nutrient concentrations, and temporally diverse patterns were controlled predominantly by anthropogenic influence (e.g., dam construction and soil conservation, reclamation and agricultural plantations, anthropogenic nutrient input, dust storms, eutrophication, etc) and climate events (e.g., interdecadal climatic jump and heavy rain events) in the geological period.

Hourly storm characteristics along the U.S. West Coast: Role of atmospheric rivers in extreme precipitation

Released July 05, 2017 00:00 EST

2017, Geophysical Research Letters

Maryam A. Lamjiri, Michael Dettinger, F. Martin Ralph, B. Guan

Gridded hourly precipitation observations over the conterminous U.S., from 1948 to 2002, are analyzed to determine climatological characteristics of storm precipitation totals. Despite generally lower hourly intensities, precipitation totals along the U.S. West Coast (USWC) are comparable to those in southeast U.S. (SEUS). Storm durations, more so than hourly intensities, strongly modulate precipitation-total variability over the USWC, where the correlation coefficients between storm durations and storm totals range from 0.7 to 0.9. Atmospheric rivers (ARs) contribute 30–50% of annual precipitation on the USWC and make such large contributions to extreme storms that 60–100% of the most extreme storms, i.e., storms with precipitation-total return intervals longer than 2 years, are associated with ARs. These extreme storm totals are more strongly tied to storm durations than to storm hourly or average intensities, emphasizing the importance of AR persistence to extreme storms on the USWC.

Acquisition of Borrelia burgdorferi infection by larval Ixodes scapularis (Acari: Ixodidae) associated with engorgement measures

Released July 05, 2017 00:00 EST

2017, Journal of Medical Entomology (54) 1055-1060

Janelle Couret, M.C. Dyer, T.N. Mather, S. Han, J.I. Tsao, R.A. LeBrun, Howard Ginsberg

Measuring rates of acquisition of the Lyme disease pathogen, Borrelia burgdorferi sensu lato Johnson, Schmid, Hyde, Steigerwalt & Brenner, by the larval stage of Ixodes scapularis Say is a useful tool for xenodiagnoses of B. burgdorferi in vertebrate hosts. In the nymphal and adult stages of I. scapularis, the duration of attachment to hosts has been shown to predict both body engorgement during blood feeding and the timing of infection with B. burgdorferi. However, these relationships have not been established for the larval stage of I. scapularis. We sought to establish the relationship between body size during engorgement of larval I. scapularis placed on B. burgdorferi-infected, white-footed mice (Peromyscus leucopus Rafinesque) and the presence or absence of infection in larvae sampled from hosts over time. Body size, time, and their interaction were the best predictors of larval infection with B. burgdorferi. We found that infected larvae showed significantly greater engorgement than uninfected larvae as early as 24 h after placement on a host. These findings may suggest that infection with B. burgdorferi affects the larval feeding process. Alternatively, larvae that engorge more rapidly on hosts may acquire infections faster. Knowledge of these relationships can be applied to improve effective xenodiagnosis of B. burgdorferi in white-footed mice. Further, these findings shed light on vector–pathogen–host interactions during an understudied part of the Lyme disease transmission cycle.

Baseline assessments for coral reef community structure and demographics on West Maui

Released July 05, 2017 00:00 EST

2017, Report

Bernardo Vargas-Angel, Darla White, Curt Storlazzi, Tova Callender, Paulo Maurin

The coastal and upslope terrains of West Maui have had a long history of impacts owing to more than a century of human activities. Resource extraction, agriculture, as well as residential and resort development have caused land-based pollution that impairs water quality and adversely impact the adjacent marine ecosystem. Today, West Maui’s coral reefs are chronically impacted by the effects of land-based pollution, mainly sedimentation and nutrients, with documented losses of 30 – 75% in coral cover over the last 20 years. Nonetheless, despite their current status and levels of environmental impact, these coral reef communities represent a key local resource and a counterpoint to the overall low coral reef development levels both island- and state-wide. This is of high relevance because the occurrence of coral-rich assemblages and accreted reef complexes statewide is sparse. Only limited segments along the coastlines of Maui, Hawai‘i, Lana‘i, Moloka‘i, and Kaho‘olawe, harbor mature, fringing coral reefs; and unfortunately, many of them are seriously threatened by terrestrial runoff.

This report describes the results of baseline assessment surveys of coral reef benthic structure, coral community demographics, and coral condition. These surveys are intended to provide benchmarks for continued monitoring efforts and provide a gauge for comparing and evaluating the effectiveness of management actions to reduce land-based sources of pollution in priority watersheds on West Maui. Within this context, 12 permanent, long-term monitoring sites were strategically established adjacent to the 7 primary stream drainages (Wahikuli, Honokōwai, Mahinahina, Kahana/Ka‘opala, Honokeana, Honokahua, and Honolua) within the five priority watersheds (Wahikuli, Honokōwai, Kahana, Honokahua, and Honolua). Herein, benthic cover and composition, coral demographics, and coral condition of the monitoring sites are described and contrasted in the “Benthic Characterization” and “Synthesis and Discussion” sections of this report.

The baseline assessments revealed that although some areas harbor prominent coral reef structures with high live coral cover and multispecies assemblages, others are characterized by sediment-impacted corals in impoverished and species-poor communities. Mean coral cover varied widely, from 49% at Wahikuli-shallow to 4.6% at Mahinahina-shallow. Similarly, coralline algal cover averaged 12.7% at Ka‘opala and Honokeana-north, but was altogether absent at the Mahinahina sites. Macroalgae was a minor component of the benthos across all study sites, representing only up to 2.3% at Mahinahina-south, while turf algae varied considerably, from 41% at Honokeana-north to 84% at the Honokahua site. Consequently, the Benthic Substrate Ratio (BSR) also varied considerably region wide, with the highest values (≥ 1), suggesting a healthier reef condition reported for the Wahikuli, Honokeana, and Honokōwai sites; and the lowest (≤ 0.5), suggesting impairment in structure and function, recorded at the Honolua and Honokahua sites. Adult colony densities were the highest at the Wahikuli (27 col/m2) but lowest at the Ka‘opala (7 col/m2 ) site. And, colony partial mortality peaked at the Ka‘opala (33%) and was the lowest at the Honokeana Bay (12%). Moreover, in-situ and derived estimates of water turbidity and sediment loading revealed that the Ka‘opala and Wahikuli stream sites ranked the highest for turbidity, whereas the Honokōwai and Ka‘opala sites ranked highest for sediment loading.

Chronic and episodic terrestrial sediment stress has resulted in coral reef community demise, clearly illustrated at the Honolua, Honokahua, and Ka‘opala sites, where coral benthic cover and colony abundances ranked the lowest and levels of turf algae ranked among the highest. Left unattended, land-based pollution impacts will continue to negatively affect the coral reef communities of West Maui. And, under the current turbidity and sediment loading conditions, the coral-rich habitats in the Wahikuli and Honōkowai Watersheds are probably at greatest risk, given they harbor the most prominent and well-developed reefs in the region, characterized by the highest coral cover, colony densities, and structural complexity.

Field-trip guide for exploring pyroclastic density current deposits from the May 18, 1980, eruption of Mount St. Helens, Washington

Released July 05, 2017 00:00 EST

2017, Scientific Investigations Report 2017-5022-C

Brittany D. Brand, Nicholas Pollock, Damiano Sarocchi, Josef Dufek, Michael A. Clynne

Pyroclastic density currents (PDCs) are one of the most dangerous phenomena associated with explosive volcanism. To help constrain damage potential, a combination of field studies, laboratory experiments, and numerical modeling are used to establish conditions that influence PDC dynamics and depositional processes, including runout distance. The objective of this field trip is to explore field relations that may constrain PDCs at the time of emplacement.

The PDC deposits from the May 18, 1980, eruption of Mount St. Helens are well exposed along the steep flanks (10–30° slopes) and across the pumice plain (5–12° slopes) as far as 8 km north of the volcano. The pumice plain deposits represent deposition from a series of concentrated PDCs and are primarily thick (3–12 m), massive, and poorly sorted. In contrast, the steep east-flank deposits are stratified to cross-stratified, suggesting deposition from PDCs where turbulence strongly influenced transport and depositional processes.

The PDCs that descended the west flank were largely nondepositional; they maintained a higher flow energy and carrying capacity than PDCs funneled through the main breach, as evidenced by the higher concentration of large blocks in their deposits. The PDC from the west flank collided with PDCs funneled through the breach at various points along the pumice plain. Evidence for flow collision will be explored and debated throughout the field trip.
Evidence for substrate erosion and entrainment is found (1) along the steep eastern flank of the volcano, which has a higher degree of rough, irregular topography relative to the west flanks where PDCs were likely nonerosive, (2) where PDCs encountered debris-avalanche hummocks across the pumice plain, and (3) where PDCs eroded and entrained material deposited by PDCs produced during earlier phases of the eruption. Two features interpreted as large-scale (tens of meters wide) levees and a large (~200 m wide) channel scour-and-fill feature provide the first evidence of self-channelization within PDCs sustained for minutes to tens of minutes (total volume of deposits is ~0.12 km3; area covered is ~15.5 km2; Rowley and others, 1981).

Our ability to interpret the deposits of PDCs is critical for understanding transport and depositional processes that control PDC dynamics. The results of extensive work on the May 18, 1980, PDC deposits show that slope and irregular topography strongly influence PDC flow path, dynamics, criticality (for example, supercritical versus subcritical), carrying capacity, and erosive capacity. However, the influence of these conditions on ultimate flow runout and damage potential warrants further exploration through the combination of field, experimental, and numerical approaches.

Design of a naturalized flow regime—An example from the Lower Missouri River, USA

Released July 05, 2017 00:00 EST

2008, Ecohydrology (1) 81-104

Robert B. Jacobson, David L. Galat

 group of river managers, stakeholders, and scientists met during summer 2005 to design a more naturalized flow regime for the Lower Missouri River (LMOR). The objective was to comply with requirements under the U.S. Endangered Species Act to support reproduction and survival of threatened and endangered species, with emphasis on the endangered pallid sturgeon (Scaphirhynchus albus), while minimizing negative effects to existing social and economic benefits of prevailing river management. Specific hydrograph requirements for pallid sturgeon reproduction are unknown, hence much of the design process was based on features of the natural flow regime. Environmental flow components (EFCs) extracted from the reference natural flow regime were used to design and assess performance of alternative flow regimes.

The design process incorporated a primary stage in which conceptual hydrographs were developed and assessed for their general ecological and social-economic performance. The second stage accounted for hydroclimatic variation by coding the conceptual hydrographs into reservoir release rules, adding constraints for downstream flooding and low-storage precludes, and running the rules through 100 years of hydroclimatic simulation. The output flow regimes were then evaluated for presumed ecological benefits based on how closely they resembled EFCs in the reference natural flow regime. Flow regimes also were assessed for social-economic cost indicators, including days of flooding of low-lying agricultural land, days over flood stage, and storage levels in system reservoirs.

Our experience with flow-regime design on the LMOR underscored the lack of confidence the stakeholders place in the value of the natural flow regime as a measure of ecosystem benefit in the absence of fundamental scientific documentation. Stakeholders desired proof of ecological benefits commensurate with the certainty of economic losses. We also gained insight into the processes of integrating science into a collaborative management exercise. Although the 2005 collaborative effort failed to reach a consensus among stakeholders on a naturalized flow regime, the process was successful in pilot-testing a design approach; it helped focus scienctific efforts on key knowledge gaps; and it demonstrated the potential for collaborations among scientists, stakeholders, and managers in river management decision making.

A spatiotemporal clustering model for the Third Uniform California Earthquake Rupture Forecast (UCERF3‐ETAS): Toward an operational earthquake forecast

Released July 04, 2017 00:00 EST

2017, Bulletin of the Seismological Society of America (107) 1049-1081

Ned Field, Kevin R. Milner, Jeanne L. Hardebeck, Morgan T. Page, Nicholas van der Elst, Thomas H. Jordan, Andrew J. Michael, Bruce E. Shaw, Maximillan J. Werner

We, the ongoing Working Group on California Earthquake Probabilities, present a spatiotemporal clustering model for the Third Uniform California Earthquake Rupture Forecast (UCERF3), with the goal being to represent aftershocks, induced seismicity, and otherwise triggered events as a potential basis for operational earthquake forecasting (OEF). Specifically, we add an epidemic‐type aftershock sequence (ETAS) component to the previously published time‐independent and long‐term time‐dependent forecasts. This combined model, referred to as UCERF3‐ETAS, collectively represents a relaxation of segmentation assumptions, the inclusion of multifault ruptures, an elastic‐rebound model for fault‐based ruptures, and a state‐of‐the‐art spatiotemporal clustering component. It also represents an attempt to merge fault‐based forecasts with statistical seismology models, such that information on fault proximity, activity rate, and time since last event are considered in OEF. We describe several unanticipated challenges that were encountered, including a need for elastic rebound and characteristic magnitude–frequency distributions (MFDs) on faults, both of which are required to get realistic triggering behavior. UCERF3‐ETAS produces synthetic catalogs of M≥2.5 events, conditioned on any prior M≥2.5 events that are input to the model. We evaluate results with respect to both long‐term (1000 year) simulations as well as for 10‐year time periods following a variety of hypothetical scenario mainshocks. Although the results are very plausible, they are not always consistent with the simple notion that triggering probabilities should be greater if a mainshock is located near a fault. Important factors include whether the MFD near faults includes a significant characteristic earthquake component, as well as whether large triggered events can nucleate from within the rupture zone of the mainshock. Because UCERF3‐ETAS has many sources of uncertainty, as will any subsequent version or competing model, potential usefulness needs to be considered in the context of actual applications.

Adding a nitrogen footprint to Colorado State University’s sustainability plan

Released July 04, 2017 00:00 EST

2017, Sustainability (10) 89-95

Jacob Kimiecik, Jill Baron, Timothy Weinmann, Emily Taylor

As a large land grant university with more than 32,000 students, Colorado State University has both on-campus non-agricultural and agricultural sources of nitrogen (N) released to the environment. We used the Nitrogen Footprint Tool to estimate the amount of N released from different sectors of the university for the CSU 2014 academic year. The largest on campus sources were food production, utilities (heating, cooling, electricity), and research animals. The total on-campus N footprint in 2014 was 287 metric tons. This value was equivalent to the nitrogen footprint of agricultural experiment stations and other agricultural facilities, whose nitrogen footprint was 273 metric tons. CSU has opportunities to reduce its on-campus footprint through educational programs promoting low-meat diets and commuting by bicycle or bus. There is also an opportunity to advance ideas of agricultural best management practices, including precision farming and better livestock management. This article describes the planned and ongoing efforts to educate CSU about how societal activities release nitrogen to the environment, contributing to global change. It offers personal and institutional options for taking action, which would ultimately reduce CSU’s excess reactive nitrogen loss to the environment. The N-footprint for CSU, including scenarios of possible future nitrogen reductions, is also discussed.

USGS Integration of New Science and Technology, Appendix A

Released July 03, 2017 00:00 EST

2017, Report, 2017 Asian Carp Monitoring and Response Plan

Marybeth Brey, Brent C. Knights, Aaron R. Cupp, Jon Amberg, Duane C. Chapman, Robin D. Calfee, James J. Duncker

This product summarizes the USGS plans for integration of new science and technology into Asian Carp control efforts for 2017. This includes the 1) implementation and evaluation of new tactics and behavioral information for monitoring, surveillance, control and containment; 2) understanding behavior and reproduction of Asian carp in established and emerging populations to inform deterrent deployment, rapid response, and removal efforts; and 3) development and evaluation of databases, decision support tools and performance measures.

The difficulty of measuring the absorption of scattered sunlight by H2O and CO2 in volcanic plumes: A comment on Pering et al. “A novel and inexpensive method for measuring volcanic plume water fluxes at high temporal resolution,” Remote Sens. 2017, 9, 146

Released July 03, 2017 00:00 EST

2017, Remote Sensing (9)

Christoph Kern

In their recent study, Pering et al. (2017) presented a novel method for measuring volcanic water vapor fluxes. Their method is based on imaging volcanic gas and aerosol plumes using a camera sensitive to the near-infrared (NIR) absorption of water vapor. The imaging data are empirically calibrated by comparison with in situ water measurements made within the plumes. Though the presented method may give reasonable results over short time scales, the authors fail to recognize the sensitivity of the technique to light scattering on aerosols within the plume. In fact, the signals measured by Pering et al. are not related to the absorption of NIR radiation by water vapor within the plume. Instead, the measured signals are most likely caused by a change in the effective light path of the detected radiation through the atmospheric background water vapor column. Therefore, their method is actually based on establishing an empirical relationship between in-plume scattering efficiency and plume water content. Since this relationship is sensitive to plume aerosol abundance and numerous environmental factors, the method will only yield accurate results if it is calibrated very frequently using other measurement techniques.

Remote measurement of high preeruptive water vapor emissions at Sabancaya volcano by passive differential optical absorption spectroscopy

Released July 03, 2017 00:00 EST

2017, Journal of Geophysical Research B: Solid Earth (122) 3540-3564

Christoph Kern, Pablo Masias, Fredy Apaza, Kevin Reath, Ulrich Platt

Water (H2O) is by far the most abundant volcanic volatile species and plays a predominant role in driving volcanic eruptions. However, numerous difficulties associated with making accurate measurements of water vapor in volcanic plumes have limited their use as a diagnostic tool. Here we present the first detection of water vapor in a volcanic plume using passive visible-light differential optical absorption spectroscopy (DOAS). Ultraviolet and visible-light DOAS measurements were made on 21 May 2016 at Sabancaya Volcano, Peru. We find that Sabancaya's plume contained an exceptionally high relative water vapor abundance 6 months prior to its November 2016 eruption. Our measurements yielded average sulfur dioxide (SO2) emission rates of 800–900 t/d, H2O emission rates of around 250,000 t/d, and an H2O/SO2 molecular ratio of 1000 which is about an order of magnitude larger than typically found in high-temperature volcanic gases. We attribute the high water vapor emissions to a boiling-off of Sabancaya's hydrothermal system caused by intrusion of magma to shallow depths. This hypothesis is supported by a significant increase in the thermal output of the volcanic edifice detected in infrared satellite imagery leading up to and after our measurements. Though the measurement conditions encountered at Sabancaya were very favorable for our experiment, we show that visible-light DOAS systems could be used to measure water vapor emissions at numerous other high-elevation volcanoes. Such measurements would provide observatories with additional information particularly useful for forecasting eruptions at volcanoes harboring significant hydrothermal systems.

Cross-section data and pressure transducer location of the South Platte River near Fort Morgan, Colorado, 2017

Released July 01, 2017 00:00 EST

2017, Dataset

Michael S. Kohn

The USGS Colorado Water Science Center, in cooperation with the Colorado Water Conservation Board, collected hydraulic data for the South Platte River for areas adjacent to Fort Morgan, Colo., based on the USGS streamgage 06759500 South Platte River at Fort Morgan, CO. The hydraulic data include survey point data for 54 cross sections and 10 pressure transducers, which are used to record the river stage beginning at Morgan County Road 16 and extending downstream to Morgan County Road 20.5 near Fort Morgan, Colo. The cross-section and pressure transducer location data were collected using real-time kinematic Global Navigation Satellite Systems by USGS personnel from February 15, 2017, through April 18, 2017. These data can be used to develop inundation maps, which could be available to emergency personnel, public officials, and the general public using an online public mapping application at the USGS Flood Inundation Mapper, which contains flood inundation map libraries from throughout the country created by the USGS.

Use of eddy-covariance methods to "calibrate" simple estimators of evapotranspiration

Released July 01, 2017 00:00 EST

2017, Conference Paper, 2017 ASABE Annual International Meeting

David M. Sumner, Jeffrey S. Geurink, Amy Swancar

Direct measurement of actual evapotranspiration (ET) provides quantification of this large component of the hydrologic budget, but typically requires long periods of record and large instrumentation and labor costs. Simple surrogate methods of estimating ET, if “calibrated” to direct measurements of ET, provide a reliable means to quantify ET. Eddy-covariance measurements of ET were made for 12 years (2004-2015) at an unimproved bahiagrass (Paspalum notatum) pasture in Florida. These measurements were compared to annual rainfall derived from rain gage data and monthly potential ET (PET) obtained from a long-term (since 1995) U.S. Geological Survey (USGS) statewide, 2-kilometer, daily PET product. The annual proportion of ET to rainfall indicates a strong correlation (r2=0.86) to annual rainfall; the ratio increases linearly with decreasing rainfall. Monthly ET rates correlated closely (r2=0.84) to the USGS PET product. The results indicate that simple surrogate methods of estimating actual ET show positive potential in the humid Florida climate given the ready availability of historical rainfall and PET.

Evapotranspiration data at Starkey pasture site, Pasco County, Florida, January 2010 - April 2016

Released July 01, 2017 00:00 EST

2017, Dataset

Amy Swancar

This U.S. Geological Survey (USGS) data release consists of evapotranspiration measurements made at the USGS Starkey pasture climate station beginning January 1, 2010 and ending April 30, 2016. Annual ET rates corrected to a near-surface energy-budget for the 12 calendar years of record at this site (2004-2015) varied from 718 mm (2007) to 903 mm (2010). The eddy-covariance method was used, with high-frequency sensors installed above the pasture to measure sensible and latent heat fluxes. Ancillary meteorological data are also included in the data set: net radiation, soil temperature and moisture, air temperature, relative humidity, wind speed and direction, rainfall, and ground-water levels. Data were collected at 30-minute resolution, with evapotranspiration corrected to the near-surface energy-budget at that timescale. Related data sets are presented at 30-minute, daily, and monthly time intervals. The study was conducted at a nearly flat, non-irrigated site (latitude 28 13 31 N and longitude 82 33 33 W, (in degrees minutes and seconds, NAD 1927), Section 13, Township 26S, Range 17E) within the Anclote River Ranch property owned by the Southwest Florida Water Management District in Pasco County, Florida. Instrumentation was installed in April 2003. The dominant (about 80 percent of surface coverage) plant cover at the study site is bahiagrass (Paspalum notatum) that varies from a lush green during the summer to a drab brown during the winter. The bahiagrass is ungrazed and grass height can reach 0.5 meter (m). During the study, the pasture was mowed periodically to 0.2 m. Vegetation tables provided with each data release list when mowing occurred. Maximum grass rooting depth at the site is about 0.5 m. Other plants at the study site, intermixed with the bahiagrass and occurring as distinct patches, include bushy broom grass (Andropogon glomeratus), rush (Juncus spp.), dog fennel (Eupatorium capillifolium), flat-topped goldenrod (Euthamia minor), and groundsel tree (Baccharis halimifolia). Forested wetlands are present on the margins of Sandy Branch, a tributary to the Anclote River southwest of the site, and a small cypress dome (40 m diameter) is located east of the site. The effects of these forested areas are assumed to be negligible, because the pasture area extends 175 m away from the site in all directions and satisfies upwind fetch requirements for the height of the eddy covariance sensors (more than 100 times the final height of 1.5 m).0 The soils at the site are Pomona fine sands with less than 5 percent organic content. For the 13 years of record at this site, the water table was always within 2 m of land surface.

Seasonal sedimentary data collected from Old Tampa Bay, Florida, 2015–2016

Released July 01, 2017 00:00 EST

2017, Dataset

Marci E. Marot, Cathryn J. Wheaton, Christopher G. Smith

The toxic dinoflagellate Pyrodinium bahamense (P. bahamense) produces recurring, persistent summer algal blooms in Old Tampa Bay, Florida, which degrade water quality and are potentially harmful to humans if contaminated shellfish is consumed. As part of its life cycle, P. bahamense produces dormant cysts, which settle to the seafloor, forming seed beds that may initiate future blooms if favorable conditions for germination occur.

From August 2015 to September 2016, the U. S. Geological Survey (USGS) and Florida Fish and Wildlife Conservation Commission (FWC) collaborated to conduct seasonal sediment sampling at in Old Tampa Bay, Florida. Sediment cores were collected at three sites. The USGS characterized bottom sediment texture and measured profiles of naturally-occurring radionuclides in the uppermost five centimeters of the sediment column. This information will provide an assessment of sediment accumulation, depositional focusing, and resuspension in relation to the potential impact on the seeding potential of P. bahamense cysts. This data will be used in conjunction with FWC research on the vertical distribution of cyst abundance and viability to estimate the seeding potential of future blooms (Lopez and others, 2015). This project was funded by the Tampa Bay Environmental Restoration Fund.

This data release is an archive of USGS field data and laboratory analytical results for the five sampling periods in this study, designated as USGS Field Activity Numbers 2015-329-FA (project ID 15FWR02), 2015-341-FA (project ID 15FWR03), 2016-312-FA (project ID 16FWR04), 2016-327-FA (project ID 16FWR05), and 2016-350-FA (project ID 16FWR06).

Intra-reach headwater fish assemblage structure

Released July 01, 2017 00:00 EST

2017, The Open Ecology Journal (10) 1-12

James E. McKenna Jr.

Large-scale conservation efforts can take advantage of modern large databases and regional modeling and assessment methods. However, these broad-scale efforts often assume uniform average habitat conditions and/or species assemblages within stream reaches.

PeRL: A circum-Arctic Permafrost Region Pond and Lake database

Released July 01, 2017 00:00 EST

2017, Earth System Science Data (9) 317-348

Sina Muster, Kurt Roth, Moritz Langer, Stephan Lange, Fabio Cresto Aleina, Annett Bartsch, Anne Morgenstern, Guido Grosse, Benjamin Jones, A.B.K. Sannel, Ylva Sjoberg, Frank Gunther, Christian Andresen, Alexandra Veremeeva, Prajna R. Lindgren, Frédéric Bouchard, Mark J. Lara, Daniel Fortier, Simon Charbonneau, Tarmo A. Virtanen, Gustaf Hugelius, J. Palmtag, Matthias B. Siewert, William J. Riley, Charles Koven, Julia Boike

Ponds and lakes are abundant in Arctic permafrost lowlands. They play an important role in Arctic wetland ecosystems by regulating carbon, water, and energy fluxes and providing freshwater habitats. However, ponds, i.e., waterbodies with surface areas smaller than 1. 0 × 104 m2, have not been inventoried on global and regional scales. The Permafrost Region Pond and Lake (PeRL) database presents the results of a circum-Arctic effort to map ponds and lakes from modern (2002–2013) high-resolution aerial and satellite imagery with a resolution of 5 m or better. The database also includes historical imagery from 1948 to 1965 with a resolution of 6 m or better. PeRL includes 69 maps covering a wide range of environmental conditions from tundra to boreal regions and from continuous to discontinuous permafrost zones. Waterbody maps are linked to regional permafrost landscape maps which provide information on permafrost extent, ground ice volume, geology, and lithology. This paper describes waterbody classification and accuracy, and presents statistics of waterbody distribution for each site. Maps of permafrost landscapes in Alaska, Canada, and Russia are used to extrapolate waterbody statistics from the site level to regional landscape units. PeRL presents pond and lake estimates for a total area of 1. 4 × 106 km2 across the Arctic, about 17 % of the Arctic lowland ( <  300 m a.s.l.) land surface area. PeRL waterbodies with sizes of 1. 0 × 106 m2 down to 1. 0 × 102 m2 contributed up to 21 % to the total water fraction. Waterbody density ranged from 1. 0 × 10 to 9. 4 × 101 km−2. Ponds are the dominant waterbody type by number in all landscapes representing 45–99 % of the total waterbody number. The implementation of PeRL size distributions in land surface models will greatly improve the investigation and projection of surface inundation and carbon fluxes in permafrost lowlands. Waterbody maps, study area boundaries, and maps of regional permafrost landscapes including detailed metadata are available at https://doi.pangaea.de/10.1594/PANGAEA.868349.

Decomposition of plant litter in Pacific coast tidal marshes, 2014-2015

Released July 01, 2017 00:00 EST

2017, Dataset

Christopher Janousek, Kevin J. Buffington, Glenn R. Guntenspergen, Karen M. Thorne, Bruce D. Dugger, John Takekawa

Decomposition of plant matter is one of the key processes affecting carbon cycling and storage in tidal wetlands. In this study, we evaluated the effects of factors related to climate change (temperature, inundation) and vegetation composition on rates of litter decay in seven tidal marsh sites along the Pacific coast. In 2014 we conducted manipulative experiments to test inundation effects on litter decay at Siletz Bay, OR and Petaluma marsh, CA. In 2015 we studied decay of litter in high and low elevation marshes at seven Pacific coast sites.

These data support the following publication: Janousek, C.N., Buffington, K.J., Guntenspergen, G.R. et al. Ecosystems (2017). doi:10.1007/s10021-017-0111-6. http://link.springer.com/article/10.1007/s10021-017-0111-6

St. Joseph River at Elkhart, Indiana, flood-inundation HEC-RAS Model

Released July 01, 2017 00:00 EST

2017, Dataset

Zachary W. Martin

Digital flood-inundation maps for a 6.6-mile reach of the St. Joseph River at Elkhart, Indiana were created by the U.S. Geological Survey (USGS) in cooperation with the Indiana Office of Community and Rural Affairs. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the USGS streamgage 04101000, St. Joseph River at Elkhart, Ind. Near-real-time stages at this streamgage may be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/, which also forecasts flood hydrographs at this site (NWS site EKMI3). Flood profiles were computed for the USGS streamgage 04101000, St. Joseph River at Elkhart, Ind., reach by means of a one-dimensional step-backwater hydraulic modeling software developed by the U.S. Army Corps of Engineers. The hydraulic model was calibrated using the current stage-discharge rating at the USGS streamgage 04101000, St. Joseph River at Elkhart, Ind. The hydraulic model was then used to compute 6 water-surface profiles for flood stages at 1-foot (ft) intervals referenced to the streamgage datum ranging from 23.0 ft (the NWS “action stage”) to 28.0 ft, which is the highest stage interval of the current USGS stage-discharge rating curve and 1 ft higher than the NWS “major flood stage.” The simulated water-surface profiles were then combined with a Geographic Information System digital elevation model (derived from light detection and ranging [lidar]) data having a 0.49-ft root mean squared error and 4.9-ft horizontal resolution) to delineate the area flooded at each stage. The availability of these maps, along with Internet information regarding current stage from the USGS streamgage and forecasted high-flow stages from the NWS, will provide emergency management personnel and residents with information that is critical for flood response activities such as evacuations and road closures, as well as for post-flood recovery efforts.

The attached files on this landing page are the inputs and outputs for the U.S. Army Corps of Engineers HEC-RAS model used to create flood-inundation maps for the referenced report, https://doi.org/10.3133/sir20165179. There are two child items that contain final geospatial datasets for the flood-inundation maps: depth grids and shapefiles.

Downscaling wind and wavefields for 21st century coastal flood hazard projections in a region of complex terrain

Released July 01, 2017 00:00 EST

2017, Earth and Space Science (4) 314-334

Andrea O'Neill, Li Erikson, Patrick Barnard

While global climate models (GCMs) provide useful projections of near-surface wind vectors into the 21st century, resolution is not sufficient enough for use in regional wave modeling. Statistically downscaled GCM projections from Multivariate Adaptive Constructed Analogues provide daily averaged near-surface winds at an appropriate spatial resolution for wave modeling within the orographically complex region of San Francisco Bay, but greater resolution in time is needed to capture the peak of storm events. Short-duration high wind speeds, on the order of hours, are usually excluded in statistically downscaled climate models and are of key importance in wave and subsequent coastal flood modeling. Here we present a temporal downscaling approach, similar to constructed analogues, for near-surface winds suitable for use in local wave models and evaluate changes in wind and wave conditions for the 21st century. Reconstructed hindcast winds (1975–2004) recreate important extreme wind values within San Francisco Bay. A computationally efficient method for simulating wave heights over long time periods was used to screen for extreme events. Wave hindcasts show resultant maximum wave heights of 2.2 m possible within the Bay. Changes in extreme over-water wind speeds suggest contrasting trends within the different regions of San Francisco Bay, but 21th century projections show little change in the overall magnitude of extreme winds and locally generated waves.

Inputs and internal cycling of nitrogen to a causeway influenced, hypersaline lake, Great Salt Lake, Utah, USA

Released July 01, 2017 00:00 EST

2017, Aquatic Geochemistry (23) 199-216

David L. Naftz

Nitrogen inputs to Great Salt Lake (GSL), located in the western USA, were quantified relative to the resident nitrogen mass in order to better determine numeric nutrient criteria that may be considered at some point in the future. Total dissolved nitrogen inputs from four surface-water sources entering GSL were modeled during the 5-year study period (2010–2014) and ranged from 1.90 × 106 to 5.56 × 106 kg/year. The railroad causeway breach was a significant conduit for the export of dissolved nitrogen from Gilbert to Gunnison Bay, and in 2011 and 2012, net losses of total nitrogen mass from Gilbert Bay via the Causeway breach were 9.59 × 105 and 1.51 × 106 kg. Atmospheric deposition (wet + dry) was a significant source of nitrogen to Gilbert Bay, exceeding the dissolved nitrogen load contributed via the Farmington Bay causeway surface-water input by >100,000 kg during 2 years of the study. Closure of two railroad causeway culverts in 2012 and 2013 likely initiated a decreasing trend in the volume of the higher density Deep Brine Layer and associated declines in total dissolved nitrogen mass contained in this layer. The large dissolved nitrogen pool in Gilbert Bay relative to the amount of nitrogen contributed by surface-water inflow sources is consistent with the terminal nature of GSL and the predominance of internal nutrient cycling. The opening of the new railroad causeway breach in 2016 will likely facilitate more efficient bidirectional flow between Gilbert and Gunnison Bays, resulting in potentially substantial changes in nutrient pools within GSL.

Does bioelectrical impedance analysis accurately estimate the condition of threatened and endangered desert fish species?

Released July 01, 2017 00:00 EST

2017, Transactions of the American Fisheries Society (146) 888-902

Kimberly L. Dibble, Micheal D. Yard, David L. Ward, Charles B. Yackulic

Bioelectrical impedance analysis (BIA) is a nonlethal tool with which to estimate the physiological condition of animals that has potential value in research on endangered species. However, the effectiveness of BIA varies by species, the methodology continues to be refined, and incidental mortality rates are unknown. Under laboratory conditions we tested the value of using BIA in addition to morphological measurements such as total length and wet mass to estimate proximate composition (lipid, protein, ash, water, dry mass, energy density) in the endangered Humpback Chub Gila cypha and Bonytail G. elegans and the species of concern Roundtail Chub G. robusta and conducted separate trials to estimate the mortality rates of these sensitive species. Although Humpback and Roundtail Chub exhibited no or low mortality in response to taking BIA measurements versus handling for length and wet-mass measurements, Bonytails exhibited 14% and 47% mortality in the BIA and handling experiments, respectively, indicating that survival following stress is species specific. Derived BIA measurements were included in the best models for most proximate components; however, the added value of BIA as a predictor was marginal except in the absence of accurate wet-mass data. Bioelectrical impedance analysis improved the R2 of the best percentage-based models by no more than 4% relative to models based on morphology. Simulated field conditions indicated that BIA models became increasingly better than morphometric models at estimating proximate composition as the observation error around wet-mass measurements increased. However, since the overall proportion of variance explained by percentage-based models was low and BIA was mostly a redundant predictor, we caution against the use of BIA in field applications for these sensitive fish species.

Ecological parameters in the Elwha River estuary before and during dam removal

Released July 01, 2017 00:00 EST

2017, Dataset

Melissa M. Foley, Patrick B. Shafroth, Matthew M. Beirne, Rebecca Paradis, Andrew C. Ritchie

The Elwha and Glines Canyon dams were removed from the Elwha River in Washington State from 2011 to 2014. We collected data for a variety of metrics in the estuary and on the river delta before (2006-2011) and during (2012-2014) dam removal to assess how increased sediment transport and deposition affected habitats, vegetation, invertebrates, and fish.

Spatial and temporal dynamics of suspended particle characteristics and composition in Navigation Pool 19 of the Upper Mississippi River

Released July 01, 2017 00:00 EST

2017, Dataset

Amanda S. Milde

Suspended particles are an essential component of large rivers influencing channel geomorphology, biogeochemical cycling of nutrients, and food web resources. The Upper Mississippi River (UMR) is a large floodplain river that exhibits pronounced spatiotemporal variation in environmental conditions and biota, providing an ideal environment for investigating dynamics of suspended particles in large river ecosystems. Here we investigated two questions: (1) How do suspended particle characteristics (e.g., size and morphology) vary temporally and spatially? and (2) What environmental variables have the strongest association with particle characteristics? Water sampling was conducted in June, August, and September of 2013 and 2014 in Navigation Pool 19 of the UMR. A FlowCAM particle imaging system was used to enumerate and measure particles 53–300 µm in diameter for size and shape characteristics (e.g., volume, elongation, and symmetry). Suspended particle characteristics varied considerably over space and time and were strongly associated with discharge and concentrations of nitrate + nitrite (NO3-) and soluble reactive phosphorous (SRP). Particle characteristics in backwaters were distinct from those in other habitats for most of the study period, likely due to reduced hydrologic connectivity and higher biotic production in backwaters. During low discharge, phytoplankton and zooplankton made up relatively greater proportions of the observed particles. Concurrently during low discharge, concentrations of chlorophyll, volatile suspended solids, and total phosphorous were higher. Our results suggest that there are complex interactions among space, time, discharge, and other environmental variables (e.g. water nutrients) which drive suspended particle dynamics in large rivers.

Basin characteristics and mean annual streamflow data for streamgages in New Mexico and adjacent states, 2017

Released July 01, 2017 00:00 EST

2017, Dataset

Aurelia Mitchell, Anne C. Tillery

The U.S. Geological Survey (USGS), in cooperation with the New Mexico Water Resources Research Institute (WRRI), identified basin characteristics and estimated mean annual streamflow for a regional study of 169 USGS surface-water streamgages throughout the state of New Mexico and adjacent states. The basin characteristics and mean annual streamflows presented here will be used to derive equations for estimating mean annual streamflow at ungaged locations in New Mexico. The accompanying directories contain basin characteristics computation methods and results, and mean annual streamflow at streamgages.

Using a Geographic Information System (GIS), surface-water streamgages were selected based on their location in New Mexico and adjoining basins. In addition, only streamgages at perennial, non-regulated streams with 10 or more years of record were selected for analysis. Of the 169 streamgages meeting the selection criteria, 79 streamgages are located outside of the state of New Mexico but in drainage basins that flow into the state. Of these 79 streamgages, 57 are located in Colorado, 3 are located in Texas, 11 are located in Arizona, 4 are located in Utah, and 4 are located in Oklahoma. The remaining 90 streamgages are located within New Mexico. Periods of record for all the 169 streamgages included in the study range from 10 to 124 years. Streamgage locations as recorded in NWIS are based on the Public Land Survey System, with horizontal accuracy of 1/8 mi². Where necessary, streamgage locations were adjusted in the GIS to match with the StreamStats streamline file. Basin characteristics were identified for each streamgage by using GIS and the online USGS StreamStats program (available at https//water.usgs.gov/osw/streamstats/) (Ries and others, 2003). Mean annual streamflow was determined using the Environmental Protection Agency (EPA) DFLOW coding (Rossman, 1990).

References

Ries, K.G., and Gray, J.R., 2003, StreamStats: a U.S. geological survey web site for stream information, in Renard, K. G., McElroy, S. A., Gburek, W. J., Canfield,H. E. and Scott, R. L., eds. 2003. First Interagency Conference on Research in the Watersheds, October 27-30, 2003.  U.S. Department of Agriculture, Agricultural Research Service.

Rossman, L A. 1990, DFLOW User’s Manual, U.S. Environmental Protection Agency, Washington, DC, EPA/600/8-90/051 (NTIS 90-225616)

Repeat microgravity data from Mesilla Valley, New Mexico, 2016-2017

Released July 01, 2017 00:00 EST

2017, Dataset

Jeffrey R. Kennedy, Andrew J. Robertson, Robert Carruth, Alex J. Rinehart

This dataset represents the network-adjusted results of relative- and absolute-gravity surveys in Mesilla and Las Cruces, New Mexico. Relative-gravity surveys were carried out using a Zero Length Spring, Inc. relative-gravity meter. The effect of solid Earth tides and ocean loading were removed from the data. Instrument drift was removed by evaluating gravity change during repeated measurements at one or more base stations. Absolute-gravity surveys were carried out using a Micro-g LaCoste, Inc. A-10 absolute-gravity meter. Vertical gradients between the different measuring heights of the absolute- and relative-gravity meters were measured using a relative-gravity meter and tripod, and used to correlate the measurements between the two instruments. Relative-gravity differences and absolute-gravity data were combined using a least-squares network adjustment, as implemented in the software Gravnet (Hwang, C., Wang, C., Lee, L., 2002. Adjustment of relative gravity measurements using weighted and datum-free constraints. Comput. Geosci. 28, 1005–1015). Additional information about the network adjustment is provided under Data Quality. Data pre- and post-processing were carried out using GSadjust (https://github.com/jkennedy-usgs/GSadjust).

Data are provided in shapefile and tabular (csv) format. The shapefile contains one entry per station per date. The csv file contains one row per station, with multiple columns for gravity, and gravity change converted to water-storage change.

Life history attributes data for Arizona Grasshopper Sparrow (Ammodramus savannarum ammolegus) in Arizona 2013

Released July 01, 2017 00:00 EST

2017, Dataset

Janet M. Ruth

Ammodramus savannarum ammolegus (commonly referred to as the Arizona Grasshopper Sparrow) occurs in the desert and plains grasslands of southeastern Arizona, southwestern New Mexico, and northern Sonora, Mexico. Although a subspecies of conservation concern, this data was produced as part of the first intensive study of its life history and breeding ecology, providing baseline data and facilitating comparisons with other North American Grasshopper Sparrow subspecies. This study is described in the publication listed in the larger work citation of this metadata record. 

Volcanic unrest and hazard communication in Long Valley Volcanic Region, California

Released July 01, 2017 00:00 EST

2017, Book chapter, Advances in volcanology

David P. Hill, Margaret T. Mangan, Stephen R. McNutt

The onset of volcanic unrest in Long Valley Caldera, California, in 1980 and the subsequent fluctuations in unrest levels through May 2016 illustrate: (1) the evolving relations between scientists monitoring the unrest and studying the underlying tectonic/magmatic processes and their implications for geologic hazards, and (2) the challenges in communicating the significance of the hazards to the public and civil authorities in a mountain resort setting. Circumstances special to this case include (1) the sensitivity of an isolated resort area to media hype of potential high-impact volcanic and earthquake hazards and its impact on potential recreational visitors and the local economy, (2) a small permanent population (~8000), which facilitates face-to-face communication between scientists monitoring the hazard, civil authorities, and the public, and (3) the relatively frequent turnover of people in positions of civil authority, which requires a continuing education effort on the nature of caldera unrest and related hazards. Because of delays associated with communication protocols between the State and Federal governments during the onset of unrest, local civil authorities and the public first learned that the U.S. Geological Survey was about to release a notice of potential volcanic hazards associated with earthquake activity and 25-cm uplift of the resurgent dome in the center of the caldera through an article in the Los Angeles Times published in May 1982. The immediate reaction was outrage and denial. Gradual acceptance that the hazard was real required over a decade of frequent meetings between scientists and civil authorities together with public presentations underscored by frequently felt earthquakes and the onset of magmatic CO2 emissions in 1990 following a 11-month long earthquake swarm beneath Mammoth Mountain on the southwest rim of the caldera. Four fatalities, one on 24 May 1998 and three on 6 April 2006, underscored the hazard posed by the CO2 emissions. Initial response plans developed by county and state agencies in response to the volcanic unrest began with “The Mono County Volcano Contingency Plan” and “Plan Caldera” by the California Office of Emergency Services in 1982–84. They subsequently became integrated in the regularly updated County Emergency Operation Plan. The alert level system employed by the USGS also evolved from the three-level “Notice-Watch-Warning” system of the early 1980s through a five level color-code to the current “Normal-Advisory-Watch-Warning” ground-based system in conjunction with the international 4-level aviation color-code for volcanic ash hazards. Field trips led by the scientists proved to be a particularly effective means of acquainting local residents and officials with the geologically active environment in which they reside. Relative caldera quiescence from 2000 through 2011 required continued efforts to remind an evolving population that the hazards posed by the 1980–2000 unrest persisted. Renewed uplift of the resurgent dome from 2011 to 2014 was accompanied by an increase in low-level earthquake activity in the caldera and beneath Mammoth Mountain and continues through May 2016. As unrest levels continue to wax and wane, so will the communication challenges.

Cottonwood management at Theodore Roosevelt National Park, North Dakota

Released July 01, 2017 00:00 EST

2017, Dataset

Jonathan M. Friedman, Eleanor R. Griffin

This data release consists of the following components:

Sex ratio data from cottonwood trees at random points on the floodplain in the North and South units of Theodore Roosevelt National Park, ND. These data were used to investigate the effects of age, height above, and distance from the channel on mortality of male and female trees of plains cottonwood (Populus deltoides subsp. monilifera) as described in the Friedman and Griffin (2017) report.

Tree core and tree ring data from the North and South Units of Theodore Roosevelt National Park, North Dakota. South Unit data was collected in April 2012, North Unit data was collected in the summer and fall of 2010. The trees are located on the floodplain of the Little Missouri River in Theodore Roosevelt National Park. These data were used to reconstruct flow and climate as described in the Friedman and Griffin (2017) report and in other documents cited by that report. The tree ring data is presented in Standard Tucson format.

Floodplain and riparian cottonwood forest areas in the South Unit were digitized as separate shapefiles using 2010 NAIP imagery. They were mapped to assist management of cottonwood forests by increasing understanding of the relation between geomorphic setting, flow, precipitation, temperature, and other factors.

Edges of water, channel centerline, valley bottom centerline, extent of valley bottom, and estimated bankfull channel data for the Little Missouri River in the North and South Units were mapped as separate shapefiles from 2010 NAIP imagery as well.

Archive of sediment physical properties and grain-size data for sediment samples collected offshore of Assateague Island, Maryland and Virginia:

Released July 01, 2017 00:00 EST

2017, Dataset

Alisha Ellis, Cathryn J. Wheaton, Christopher G. Smith

This data release serves as an archive of sediment physical properties and grain-size data for surficial samples collected offshore of Assateague Island, Maryland and Virginia, for comparison with surficial estuarine and subaerial sedimentological samples collected and assessed following Hurricane Sandy (Ellis and others, 2015; Smith and others, 2015; Bernier and others, 2016). The sediment samples were collected by scientists from the U.S. Geological Survey (USGS) office in Woods Hole, Massachusetts while aboard the motor vessel (M/V) Scarlett Isabella as part of a larger effort to map the inner continental shelf (Pendleton and others, 2016). Following field work, the sediment samples were shipped to the USGS Coastal and Marine Science Center in St. Petersburg, Florida, where they were renamed for consistency with a previously existing naming scheme and processed for bulk density, loss on ignition (LOI), and grain-size. The grain-size subsamples were processed on a Coulter LS200 particle-size analyzer for consistency regarding methods and output statistics with related data sets from Chincoteague Bay and Assateague Island. For more information regarding sample collection and site information or the related data sets, refer to USGS data release Pendleton and others, 2016; for more information regarding processing methods refer to USGS Open-File Report 2015–1219.

Microbial-sized, carboxylate-modified microspheres as surrogate tracers in a variety of subsurface environments: An overview

Released July 01, 2017 00:00 EST

2017, Procedia Earth and Planetary Science (17) 372-375

Ronald W. Harvey, David W. Metge, Denis R. LeBlanc

Since 1986, fluorescent carboxylate-modified polystyrene/latex microspheres (FCM) have been co-injected into aquifers along with conservative tracers and viruses, bacteria, and (or) protozoa. Use of FCM has resulted in new information about subsurface transport behaviors of microorganisms in fractured crystalline rock, karst limestone, soils, and granular aquifers. FCM have been used as surrogates for oocysts of the pathogenic protist Cryptosporidium parvum in karst limestone and granular drinking-water aquifers. The advantages of FCM in subsurface transport studies are that they are safe in tracer applications, negatively charged, easy to detect, chemically inert, and available in wide range of sizes. The limitations of FCM are that the quantities needed for some field transport studies can be prohibitively expensive and that their surface characteristics may not match the microorganisms of interest. These limitations may be ameliorated, in part by using chemically modified FCM so that their surface characteristics are a better match to that of the organisms. Also, more sensitive methods of detection may allow using smaller quantities of FCM. To assess how the transport behaviors of FCM and pathogens might compare at the field scale, it is helpful to conduct side-by-side comparisons of their transport behaviors using the geologic media and site-specific conditions that characterize the field site.

Vector shorelines and associated shoreline change rates derived from Lidar and aerial imagery for Dauphin Island, Alabama: 1940-2015

Released July 01, 2017 00:00 EST

2017, Dataset

Rachel Henderson, Paul R. Nelson, Joseph W. Long, Christopher G. Smith

In support of studies and assessments of barrier island evolution in the Gulf of Mexico, rates of shoreline change for Dauphin Island, Alabama, were calculated using two different shoreline proxy datasets with a total temporal span of 75 years.  Mean High Water line (MHW) shorelines were generated from 14 lidar datasets from 1998 to 2014, and Wet Dry Line (WDL) shorelines were digitized from ten sets of georeferenced aerial images from 1940 to 2015. Rates of change for the open-ocean (south-facing) and back-barrier (north-facing) coast were calculated for three groups of shorelines:  MHW (lidar), WDL (aerial) and MHW and WDL shorelines combined. Calculations were performed using the Digital Shoreline Analysis System (DSAS) version 4.3, an ArcGIS extension developed by the U.S. Geological Survey (Thieler and others, 2009).  

Thieler, E.R., Himmelstoss, E.A., Zichichi, J.L., and Ergul, Ayhan, 2009, Digital Shoreline Analysis System (DSAS) version 4.0—An ArcGIS extension for calculating shoreline change: U.S. Geological Survey Open-File Report 2008-1278, https://woodshole.er.usgs.gov/project-pages/DSAS/version4/.

Field efficacy trials with sylvatic plague vaccine

Released July 01, 2017 00:00 EST

2017, Dataset

Katherine Richgels, Robin E. Russell, Tonie E. Rocke

These data were collected as part of a field trial to test the efficacy of a sylvatic plague vaccine. Treatment and control sites were selected randomly from the available sites at each location. Site pairs were a minimum of 20 acres, (with a few exceptions). Prairie dog trapping took place a minimum of two weeks post-baiting and trapping procedures were approved by the NWHC Animal Care and Use Committee as well as individual states as required.

Hydrological data concerning submarine groundwater discharge along the western margin of Indian River Lagoon, east-central Florida - December 2016 and January 2017

Released July 01, 2017 00:00 EST

2017, Dataset

Terrence McCloskey, Christopher G. Smith, Nicholas Zaremba, Elsie McBride, Cheyenne Everhart

Indian River Lagoon, one of the most biologically diverse estuarine systems in the continental United States, is a shallow brackish lagoon stretching along approximately 200 kilometers (km) of the Atlantic coast of central Florida. Lagoon width varies from ~0.5 – 9.0 km, with substantial human infrastructure lining both shores. Scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center investigated submarine groundwater discharge at Eau Gallie North, a site along the western shore in the central section of the lagoon, using continuous resistivity profiling (CRP). The CRP array was towed behind a boat along five shore-parallel transects located ~125, 200, 350, 500 and 750 meters offshore and traversing ~1.5 km along north-south transects. Each transect was given a track name (EB., EC., ED., EE., and EF.) and lines were run both north to south and south to north. Repetitive profiles will be conducted along these same tracks, at various times, in order to determine temporal variability. As resistivity is a function of both geology and salinity, temporal changes will reflect salinity changes, as the underlying geology will be presumed to remain constant. Resistivity data were assigned geographic coordinates and water depth values, in order to produce modeled resistivity, accounting for salinity and geologic parameters.  This data release provides the raw resistivity, geographical and water parameter data collected in December 2016 and January 2017.

Serum biochemistries of Pacific black brant

Released July 01, 2017 00:00 EST

2017, Dataset

J. Christian Franson, Paul L. Flint, Joel A. Schmutz

The data set contains results for nine serum biochemistries in molting Pacific black brant (Branta bernicla nigricans). These data were used to calculate reference intervals (sometimes referred to as normal values) for the nine serum biochemistries. All brant were after-hatch year. All samples were collected in 2006 and 2007 in the Teshekpuk Lake Special Area, Alaska.

The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States

Released June 30, 2017 11:00 EST

2017, Data Series 1052

John D. Horton, Carma A. San Juan, Douglas B. Stoeser

The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States (https://doi.org/10.5066/F7WH2N65) represents a seamless, spatial database of 48 State geologic maps that range from 1:50,000 to 1:1,000,000 scale. A national digital geologic map database is essential in interpreting other datasets that support numerous types of national-scale studies and assessments, such as those that provide geochemistry, remote sensing, or geophysical data. The SGMC is a compilation of the individual U.S. Geological Survey releases of the Preliminary Integrated Geologic Map Databases for the United States. The SGMC geodatabase also contains updated data for six States and seven entirely new State geologic maps that have been added since the preliminary databases were published. Numerous errors have been corrected and enhancements added to the preliminary datasets using thorough quality assurance/quality control procedures. The SGMC is not a truly integrated geologic map database because geologic units have not been reconciled across State boundaries. However, the geologic data contained in each State geologic map have been standardized to allow spatial analyses of lithology, age, and stratigraphy at a national scale

Land before water: The relative temporal sequence of human alterationof freshwater ecosystems in the conterminous United States

Released June 30, 2017 00:00 EST

2017, Anthropocene (18) 27-46

Ellen Wohl, Katherine B Lininger, Jill Baron

Human alteration of ecosystems prior to Euro-American contact in the area that became the conterminous United States disproportionately affected terrestrial systems compared to freshwater ecosystems, primarily through the use of fire and agriculture in some regions of the United States. After circa 1600 AD, trapping of beaver, along with intensive modification of rivers and wetlands for navigation, mining, flood control, power generation, and agriculture, substantially altered river corridors throughout the country. River corridor here refers to channels of all sizes, from headwater streams to very large rivers, and includes floodplains and wetlands associated with channels. Literature suggests that ecosystem alteration by humans prior to and during Euro-American settlement changed from predominantly terrestrial to both terrestrial and freshwater in a manner that was time-transgressive with Euro- American colonization and U.S. settlement between the 17th and 19th centuries. The extent and intensity of post-Euro-American alteration of freshwater environments in the United States has resulted in widespread river metamorphosis toward more geomorphically and ecologically homogenous systems. Recognition of the rapidity and ubiquity of this alteration, and the consequent instability of many contemporary river corridors, should underpin contemporary river management

Tracking the fate of nitrate through pulse-flow wetlands: A mesocosm scale 15N enrichment tracer study

Released June 30, 2017 00:00 EST

2017, Ecological Engineering (106) 597-608

Tiffany L. Messer, Michael R. Burchell, John Karl Böhlke, Craig R. Tobias

Quantitative information about the fate of applied nitrate (NO3-N) in pulse-flow constructed wetlands is essential for designing wetland treatment systems and assessing their nitrogen removal services for agricultural and stormwater applications. Although many studies have documented NO3-N losses in wetlands, controlled experiments indicating the relative importance of different processes and N sinks are scarce. In the current study, 15NO3-N isotope enrichment tracer experiments were conducted in wetland mesocosms of two different wetland soil types at two realistic agricultural NO3-N source loads. The 15N label was traced from the source NO3-N into plant biomass, soil (including organic matter and ammonium), and N-gas constituents over 7–10 day study periods. All sinks responded positively to higher NO3-N loading. Plant uptake exceeded denitrification 2–3 fold in the low NO3-N loading experiments, while both fates were nearly equivalent in the high loading experiments. One to two years later, soils largely retained the assimilated tracer N, whereas plants had lost much of it. Results demonstrated that plant and microbial assimilation in the soil (temporary N sinks) can exceed denitrification (permanent N loss) in pulse-flow environments and must be considered by wetland designers and managers for optimizing nitrogen removal potential.

Life history attributes of Arizona Grasshopper Sparrow (Ammodramus savannarum ammolegus) and comparisons with other North American subspecies

Released June 30, 2017 00:00 EST

2017, The American Midland Naturalist (178) 64-81

Janet M. Ruth

Ammodramus savannarum ammolegus—commonly referred to as the Arizona Grasshopper Sparrow—occurs in the desert and plains grasslands of southeastern Arizona, southwestern New Mexico, and northern Sonora, Mexico. Although a subspecies of conservation concern, this is the first intensive study of its life history and breeding ecology, providing baseline data and facilitating comparisons with other North American Grasshopper Sparrow subspecies. Specifically, I found A. s. ammolegus males generally weighed less than other subspecies (16.0 ± 0.8 g) but with intermediate exposed culmen length (11.6 ± 0.5 mm) and wing chord length similar to the other two migratory subspecies (62.7 ± 1.5 mm). Territory size for A. s. ammolegus was 0.72 ± 0.37 ha, with some variation between sites and among years, possibly indicating variation in habitat quality across spatial and temporal scales. The return rate for A. s. ammolegus males was 39.2%. Nest initiation for A. s. ammolegus was early to mid-July after the monsoons had begun. Domed nests were constructed on the ground, primarily under native bunch grasses, and frequently with a tunnel extending beyond the nest rim, with nest openings oriented north. Clutch size was 3.97 ± 0.68, with no evidence of Brown-headed Cowbird (Molothrus ater) nest parasitism. Extreme climate factors in the arid Southwest may have affected the life history and morphology of A. s. ammolegus as compared to other subspecies, influencing body size and mass, culmen length, breeding phenology, and nest orientation. Other geographic variation occurred in return rates, clutch size, and nest parasitism rates. The baseline data for A. s. ammolegus obtained in this study will inform future taxonomic and ecological studies as well as conservation planning. Comparisons of A. s. ammolegus morphometrics with those of other subspecies will assist field biologists in distinguishing among subspecies where they overlap, especially on wintering grounds.

How can climate change and engineered water conveyance affect sediment dynamics in the San Francisco Bay-Delta system?

Released June 30, 2017 00:00 EST

2017, Climatic Change (142) 375-389

Fernanda Achete, Mick Van der Wegen, Jan Adriaan Roelvink, Bruce E. Jaffe

Suspended sediment concentration is an important estuarine health indicator. Estuarine ecosystems rely on the maintenance of habitat conditions, which are changing due to direct human impact and climate change. This study aims to evaluate the impact of climate change relative to engineering measures on estuarine fine sediment dynamics and sediment budgets. We use the highly engineered San Francisco Bay-Delta system as a case study. We apply a process-based modeling approach (Delft3D-FM) to assess the changes in hydrodynamics and sediment dynamics resulting from climate change and engineering scenarios. The scenarios consider a direct human impact (shift in water pumping location), climate change (sea level rise and suspended sediment concentration decrease), and abrupt disasters (island flooding, possibly as the results of an earthquake). Levee failure has the largest impact on the hydrodynamics of the system. Reduction in sediment input from the watershed has the greatest impact on turbidity levels, which are key to primary production and define habitat conditions for endemic species. Sea level rise leads to more sediment suspension and a net sediment export if little room for accommodation is left in the system due to continuous engineering works. Mitigation measures like levee reinforcement are effective for addressing direct human impacts, but less effective for a persistent, widespread, and increasing threat like sea level rise. Progressive adaptive mitigation measures to the changes in sediment and flow dynamics resulting from sea level rise may be a more effective strategy. Our approach shows that a validated process-based model is a useful tool to address long-term (decades to centuries) changes in sediment dynamics in highly engineered estuarine systems. In addition, our modeling approach provides a useful basis for long-term, process-based studies addressing ecosystem dynamics and health.

Yellowstone grizzly bears: Ecology and conservation of an icon of wildness

Released June 30, 2017 00:00 EST

2017, Book

P.J. White, Kerry A. Gunther, Frank T. van Manen, editor(s)

No abstract available.

Two-step adaptive management for choosing between two management actions

Released June 30, 2017 00:00 EST

2017, Ecological Applications (27) 1210-1222

Alana L. Moore, Leila Walker, Michael C. Runge, Eve McDonald-Madden, Michael A McCarthy

Adaptive management is widely advocated to improve environmental management. Derivations of optimal strategies for adaptive management, however, tend to be case specific and time consuming. In contrast, managers might seek relatively simple guidance, such as insight into when a new potential management action should be considered, and how much effort should be expended on trialing such an action. We constructed a two-time-step scenario where a manager is choosing between two possible management actions. The manager has a total budget that can be split between a learning phase and an implementation phase. We use this scenario to investigate when and how much a manager should invest in learning about the management actions available. The optimal investment in learning can be understood intuitively by accounting for the expected value of sample information, the benefits that accrue during learning, the direct costs of learning, and the opportunity costs of learning. We find that the optimal proportion of the budget to spend on learning is characterized by several critical thresholds that mark a jump from spending a large proportion of the budget on learning to spending nothing. For example, as sampling variance increases, it is optimal to spend a larger proportion of the budget on learning, up to a point: if the sampling variance passes a critical threshold, it is no longer beneficial to invest in learning. Similar thresholds are observed as a function of the total budget and the difference in the expected performance of the two actions. We illustrate how this model can be applied using a case study of choosing between alternative rearing diets for hihi, an endangered New Zealand passerine. Although the model presented is a simplified scenario, we believe it is relevant to many management situations. Managers often have relatively short time horizons for management, and might be reluctant to consider further investment in learning and monitoring beyond collecting data from a single time period.

Response of deep groundwater to land use change in desert basins of the Trans-Pecos region, Texas, USA: Effects on infiltration, recharge, and nitrogen fluxes

Released June 30, 2017 00:00 EST

2017, Hydrological Processes (31) 2349-2364

Wendy Marie Robertson, John Karl Böhlke, John M. Sharp

Quantifying the effects of anthropogenic processes on groundwater in arid regions can be complicated by thick unsaturated zones with long transit times. Human activities can alter water and nutrient fluxes, but their impact on groundwater is not always clear. This study of basins in the Trans-Pecos region of Texas links anthropogenic land use and vegetation change with alterations to unsaturated zone fluxes and regional increases in basin groundwater NO3concentrations. Median increases in groundwater NO3 (by 0.7–0.9 mg-N/l over periods ranging from 10 to 50+ years) occurred despite low precipitation (220–360 mm/year), high potential evapotranspiration (~1570 mm/year), and thick unsaturated zones (10–150+ m). Recent model simulations indicate net infiltration and groundwater recharge can occur beneath Trans-Pecos basin floors, and may have increased due to irrigation and vegetation change. These processes were investigated further with chemical and isotopic data from groundwater and unsaturated zone cores. Some unsaturated zone solute profiles indicate flushing of natural salt accumulations has occurred. Results are consistent with human-influenced flushing of naturally accumulated unsaturated zone nitrogen as an important source of NO3 to the groundwater. Regional mass balance calculations indicate the mass of natural unsaturated zone NO3 (122–910 kg-N/ha) was sufficient to cause the observed groundwater NO3 increases, especially if augmented locally with the addition of fertilizer N. Groundwater NO3 trends can be explained by small volumes of high NO3 modern recharge mixed with larger volumes of older groundwater in wells. This study illustrates the importance of combining long-term monitoring and targeted process studies to improve understanding of human impacts on recharge and nutrient cycling in arid regions, which are vulnerable to the effects of climate change and increasing human reliance on dryland ecosystems.

Assessment of continuous oil and gas resources in the Pannonian Basin Province, Hungary, 2016

Released June 29, 2017 16:55 EST

2017, Fact Sheet 2017-3033

Christopher J. Schenk, Timothy R. Klett, Phuong A. Le, Michael E. Brownfield, Heidi M. Leathers-Miller

Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered, technically recoverable continuous resources of 119 million barrels of oil and 944 billion cubic feet of gas in the Hungarian part of the Pannonian Basin Province.

Grand challenges for integrated USGS science—A workshop report

Released June 29, 2017 15:00 EST

2017, Open-File Report 2017-1076

Karen E. Jenni, Martin B. Goldhaber, Julio L. Betancourt, Jill S. Baron, R. Sky Bristol, Mary Cantrill, Paul E. Exter, Michael J. Focazio, John W. Haines, Lauren E. Hay, Leslie Hsu, Victor F. Labson, Kevin D. Lafferty, Kristin A. Ludwig, Paul C. Milly, Toni L. Morelli, Suzette A. Morman, Nedal T. Nassar, Timothy R. Newman, Andrea C. Ostroff, Jordan S. Read, Sasha C. Reed, Carl D. Shapiro, Richard A. Smith, Ward E. Sanford, Terry L. Sohl, Edward G. Stets, Adam J. Terando, Donald E. Tillitt, Michael A. Tischler, Patricia L. Toccalino, David J. Wald, Mark P. Waldrop, Anne Wein, Jake F. Weltzin, Christian E. Zimmerman

Executive Summary

The U.S. Geological Survey (USGS) has a long history of advancing the traditional Earth science disciplines and identifying opportunities to integrate USGS science across disciplines to address complex societal problems. The USGS science strategy for 2007–2017 laid out key challenges in disciplinary and interdisciplinary arenas, culminating in a call for increased focus on a number of crosscutting science directions. Ten years on, to further the goal of integrated science and at the request of the Executive Leadership Team (ELT), a workshop with three dozen invited scientists spanning different disciplines and career stages in the Bureau convened on February 7–10, 2017, at the USGS John Wesley Powell Center for Analysis and Synthesis in Fort Collins, Colorado.

The workshop focused on identifying “grand challenges” for integrated USGS science. Individual participants identified nearly 70 potential grand challenges before the workshop and through workshop discussions. After discussion, four overarching grand challenges emerged:

Participants also identified a “comprehensive science challenge” that highlights the development of integrative science, data, models, and tools—all interacting in a modular framework—that can be used to address these and other future grand challenges:

EarthMAP is our long-term vision for an integrated scientific framework that spans traditional scientific boundaries and disciplines, and integrates the full portfolio of USGS science: research, monitoring, assessment, analysis, and information delivery.

The Department of Interior, and the Nation in general, have a vast array of information needs. The USGS meets these needs by having a broadly trained and agile scientific workforce. Encouraging and supporting cross-discipline engagement would position the USGS to tackle complex and multifaceted scientific and societal challenges in the 21st Century.

Historical Topographic Map Collection bookmark

Released June 29, 2017 10:30 EST

2017, General Information Product 179

Kristin A. Fishburn, Gregory J. Allord

The U.S. Geological Survey (USGS) National Geospatial Program is scanning published USGS 1:250,000-scale and larger topographic maps printed between 1884, the inception of the topographic mapping program, and 2006. The goal of this project, which began publishing the historical scanned maps in 2011, is to provide a digital repository of USGS topographic maps, available to the public at no cost. For more than 125 years, USGS topographic maps have accurately portrayed the complex geography of the Nation. The USGS is the Nation’s largest producer of printed topographic maps, and prior to 2006, USGS topographic maps were created using traditional cartographic methods and printed using a lithographic printing process. As the USGS continues the release of a new generation of topographic maps (US Topo) in electronic form, the topographic map remains an indispensable tool for government, science, industry, land management planning, and leisure.

Landsat-based trend analysis of lake dynamics across northern permafrost regions

Released June 29, 2017 00:00 EST

2017, Remote Sensing (9)

Ingmar Nitze, Guido Grosse, Benjamin M. Jones, Christopher D. Arp, Mathias Ulrich, Alexander Federov, Alexandra Veremeeva

Lakes are a ubiquitous landscape feature in northern permafrost regions. They have a strong impact on carbon, energy and water fluxes and can be quite responsive to climate change. The monitoring of lake change in northern high latitudes, at a sufficiently accurate spatial and temporal resolution, is crucial for understanding the underlying processes driving lake change. To date, lake change studies in permafrost regions were based on a variety of different sources, image acquisition periods and single snapshots, and localized analysis, which hinders the comparison of different regions. Here we present, a methodology based on machine-learning based classification of robust trends of multi-spectral indices of Landsat data (TM,ETM+, OLI) and object-based lake detection, to analyze and compare the individual, local and regional lake dynamics of four different study sites (Alaska North Slope, Western Alaska, Central Yakutia, Kolyma Lowland) in the northern permafrost zone from 1999 to 2014. Regional patterns of lake area change on the Alaska North Slope (-0.69%), Western Alaska (-2.82%), and Kolyma Lowland (-0.51%) largely include increases due to thermokarst lake expansion, but more dominant lake area losses due to catastrophic lake drainage events. In contrast, Central Yakutia showed a remarkable increase in lake area of 48.48%, likely resulting from warmer and wetter climate conditions over the latter half of the study period. Within all study regions, variability in lake dynamics was associated with differences in permafrost characteristics, landscape position (i.e. upland vs. lowland), and surface geology. With the global availability of Landsat data and a consistent methodology for processing the input data derived from robust trends of multi-spectral indices, we demonstrate a transferability, scalability and consistency of lake change analysis within the northern permafrost region.

Rare earth mineral potential in the southeastern U.S. Coastal Plain from integrated geophysical, geochemical, and geological approaches

Released June 29, 2017 00:00 EST

2017, GSA Bulletin

Anjana K. Shah, Carleton Bern, Bradley S. Van Gosen, David L. Daniels, William M. Benzel, James R. Budahn, Karl J. Ellefsen, Adam Karst, Richard Davis

We combined geophysical, geochemical, mineralogical, and geological data to evaluate the regional presence of rare earth element (REE)−bearing minerals in heavy mineral sand deposits of the southeastern U.S. Coastal Plain. We also analyzed regional differences in these data to determine probable sedimentary provenance. Analyses of heavy mineral separates covering the region show strong correlations between thorium, monazite, and xenotime, suggesting that radiometric equivalent thorium (eTh) can be used as a geophysical proxy for those REE-bearing minerals. Airborne radiometric data collected during the National Uranium Resource Evaluation (NURE) program cover the southeastern United States with line spacing varying from ∼2 to 10 km. These data show eTh highs over Cretaceous and Tertiary Coastal Plain sediments from the Cape Fear arch in North Carolina to eastern Alabama; these highs decrease with distance from the Piedmont. Quaternary sediments along the modern coasts show weaker eTh anomalies, except near coast-parallel ridges from South Carolina to northern Florida. Prominent eTh anomalies are also observed over large riverbeds and their floodplains, even north of the Cape Fear arch where surrounding areas are relatively low. These variations were verified using ground geophysical measurements and sample analyses, indicating that radiometric methods are a useful exploration tool at varying scales. Further analyses of heavy mineral separates showed regional differences, not only in concentrations of monazite, but also of rutile and staurolite, and in magnetic susceptibility. The combined properties suggest the presence of subregions where heavy mineral sediments are primarily sourced from high-grade metamorphic, low-grade metamorphic, or igneous terrains, or where they represent a mixing of these sources. Comparisons between interpreted sources of heavy mineral sands near the Fall Line and igneous and metamorphic Piedmont and Blue Ridge units showed a strong correspondence with rocks closest to the Fall Line and poor correspondence with rocks farther inland. This strongly suggests that the primary source of those heavy minerals, especially monazite, is the rocks that formed the rocky coast that was present during opening of the Atlantic Ocean, which in turn indicates the importance of coastal processes in forming heavy mineral sand concentrations. Furthermore, narrow radiometric eTh and K anomalies are associated with major rivers, indicating limited spatial influence of fluvial processes. Later coastal plain sediment deposition appears to have involved reworking of sediments, providing an “inheritance” of the rocky coast composition that persists for some distance from the Fall Line. However, this inheritance is reduced with distance, and sediments within ∼100 km of the coast in Georgia and Florida exhibit properties indicative of mixing from multiple sources.

A new species of iguana Brachylophus Cuvier 1829 (Sauria: Iguania: Iguanidae) from Gau Island, Fiji Islands

Released June 29, 2017 00:00 EST

2017, Zootaxa (4273) 407-422

Robert N. Fisher, Jone Niukula, Dick Watling, Peter S. Harlow

The south Pacific iguanas (Brachylophus) currently have three recognized living species in Fiji.  Recent surveys have uncovered more specific variation (morphological and genetic) within the genus and have better defined the geographic ranges of the named species.  One of these recent discoveries is a strikingly different iguana from all other island populations in Fiji which is restricted to Gau Island of the Lomaiviti Province.  Gau is the fifth largest island in Fiji and maintains excellent upland forests in the higher elevations.  We describe this population from Gau Island as a new species, Brachylophus gau sp. nov., in recognition of its type locality.

On the probability distribution of daily streamflow in the United States

Released June 29, 2017 00:00 EST

2017, Hydrology and Earth System Sciences (21) 3093-3103

Annalise G. Blum, Stacey A. Archfield, Richard M. Vogel

Daily streamflows are often represented by flow duration curves (FDCs), which illustrate the frequency with which flows are equaled or exceeded. FDCs have had broad applications across both operational and research hydrology for decades; however, modeling FDCs has proven elusive. Daily streamflow is a complex time series with flow values ranging over many orders of magnitude. The identification of a probability distribution that can approximate daily streamflow would improve understanding of the behavior of daily flows and the ability to estimate FDCs at ungaged river locations. Comparisons of modeled and empirical FDCs at nearly 400 unregulated, perennial streams illustrate that the four-parameter kappa distribution provides a very good representation of daily streamflow across the majority of physiographic regions in the conterminous United States (US). Further, for some regions of the US, the three-parameter generalized Pareto and lognormal distributions also provide a good approximation to FDCs. Similar results are found for the period of record FDCs, representing the long-term hydrologic regime at a site, and median annual FDCs, representing the behavior of flows in a typical year.

The U.S. Geological Survey Flagstaff Science Campus—Providing expertise on planetary science, ecology, water resources, geologic processes, and human interactions with the Earth

Released June 29, 2017 00:00 EST

2017, Fact Sheet 2017-3051

Robert J. Hart, R. Greg Vaughan, Kristin McDougall, Todd Wojtowicz, Prasad Thenkenbail

The U.S. Geological Survey’s Flagstaff Science Campus is focused on interdisciplinary study of the Earth and solar system, and has the scientific expertise to detect early environmental changes and provide strategies to minimize possible adverse effects on humanity. The Flagstaff Science Campus (FSC) is located in Flagstaff, Arizona, which is situated in the northern part of the State, home to a wide variety of landscapes and natural resources, including (1) young volcanoes in the San Francisco Volcanic Field, (2) the seven ecological life zones of the San Francisco Peaks, (3) the extensive geologic record of the Colorado Plateau and Grand Canyon, (4) the Colorado River and its perennial, ephemeral, and intermittent tributaries, and (5) a multitude of canyons, mountains, arroyos, and plains. More than 200 scientists, technicians, and support staff provide research, monitoring, and technical advancements in planetary geology and mapping, biology and ecology, Earth-based geology, hydrology, and changing climate and landscapes. Scientists at the FSC work in collaboration with multiple State, Federal, Tribal, municipal, and academic partners to address regional, national, and global environmental issues, and provide scientific outreach to the general public.

Gulf Coast vulnerability assessment: Mangrove, tidal emergent marsh, barrier islands and oyster reef

Released June 28, 2017 00:00 EST

2017, Report

Amanda Watson, Joshua Reece, Blair Tirpak, Cynthia Kallio Edwards, Laura Geselbracht, Mark Woodrey, Megan K. LaPeyre, Patricia (Soupy) Dalyander

Climate, sea level rise, and urbanization are undergoing unprecedented levels of combined change and are expected to have large effects on natural resources—particularly along the Gulf of Mexico coastline (Gulf Coast). Management decisions to address these effects (i.e., adaptation) require an understanding of the relative vulnerability of various resources to these stressors. To meet this need, the four Landscape Conservation Cooperatives along the Gulf partnered with the Gulf of Mexico Alliance to conduct this Gulf Coast Vulnerability Assessment (GCVA). Vulnerability in this context incorporates exposure and sensitivity to threats (potential impact), coupled with the adaptive capacity to mitigate those threats. Potential impact and adaptive capacity reflect natural history features of target species and ecosystems. The GCVA used an expert opinion approach to qualitatively assess the vulnerability of four ecosystems: mangrove, oyster reef, tidal emergent marsh, and barrier islands, and a suite of wildlife species that depend on them. More than 50 individuals participated in the completion of the GCVA, facilitated via Ecosystem and Species Expert Teams.

Of the species assessed, Kemp’s ridley sea turtle was identified as the most vulnerable species across the Gulf Coast. Experts identified the main threats as loss of nesting habitat to sea level rise, erosion, and urbanization. Kemp’s ridley also had an overall low adaptive capacity score due to their low genetic diversity, and higher nest site fidelity as compared to other assessed species. Tidal emergent marsh was the most vulnerable ecosystem, due in part to sea level rise and erosion. In general, avian species were more vulnerable than fish because of nesting habitat loss to sea level rise, erosion, and potential increases in storm surge.

Assessors commonly indicated a lack of information regarding impacts due to projected changes in the disturbance regime, biotic interactions, and synergistic effects in both the species and habitat assessments. Many of the assessors who focused on species also identified data gaps regarding genetic information, phenotypic plasticity, life history, and species responses to past climate change and sea level rise. Regardless of information gaps, the results from the GCVA can be used to inform Gulf-wide adaptation plans. Given the scale of climatic impacts, coordinated efforts to address Gulf-wide threats to species and ecosystems will enhance the effectiveness of management actions and also have the potential to maximize the efficacy of limited funding.

Wave dynamics and flooding on low-lying tropical reef-lined coasts

Released June 28, 2017 00:00 EST

2017, Conference Paper, Proceedings Coastal Dynamics 2017

Ap van Dongeran, Curt Storlazzi, Ellen Quataert, Stuart Pearson

Many tropical islands and coasts are lined with coral reefs. These reefs are host to valuable ecosystems that support abundant marine species and provide resources for fisheries and recreation. As a flood defense, reefs protect coastlines from coastal storm damage and flooding by reducing the majority of incident wave energy. However, during storm and large swell conditions, coastal wave-driven flooding and overwash still occur due to high water levels, (infra) gravity waves, and/or low-frequency wave resonance. The wave and flooding effects cause erosion, damage to infrastructure, agricultural crops, and salinization of precious drinking water supplies. These impacts, which are likely to increase due to climate change and ongoing development on the islands, may cause many low-lying tropical islands and coastal areas to become uninhabitable before the end of the century. This paper investigates aspects of wave dynamics for the case of a small island in the tropical Pacific Ocean, shows projections of flooding under climate change scenarios, and outlines approaches to generalize the results to other islands, including mitigation options.

Rigorously valuing the role of coral reefs in coastal protection: An example from Maui, Hawaii, U.S.A.

Released June 28, 2017 00:00 EST

2017, Conference Paper, Proceedings of Coastal Dynamics 2017

Curt Storlazzi, Borja Reguero, Erik N. Lowe, James B. Shope, Ann E. Gibbs, Mike Beck, Barry Nickel

The degradation of coastal habitats, particularly coral reefs, raises risks by exposing communities to flooding hazards. The protective services of these natural defenses are not assessed in the same rigorous, economic terms as artificial defenses such as seawalls, and therefore often not considered in decision-making. Here we present a new methodology that combines economic, ecological, and engineering tools to provide a rigorous financial valuation of the coastal protection benefits of coral reefs off Maui, Hawaii, USA. We follow risk-based valuation guidelines to quantitatively estimate the risk reduction benefits from coral reefs in terms of annual expected benefits in economic terms. Our ultimate goal is to identify how, where, and when coral reefs provide the most flood reduction benefits under current and future climates to inform reef conservation and management priorities.

Reproductive strategy, spawning induction, spawning temperatures and early life history of captive sicklefin chub Macrhybopsis meeki

Released June 28, 2017 00:00 EST

2017, Journal of Fish Biology (91) 58-79

Janice Albers, Mark L. Wildhaber

Macrhybopsis reproduction and propagule traits were studied in the laboratory using two temperature regimes and three hormone treatments to determine which methods produced the most spawns. Only sicklefin chub Macrhybopsis meeki spawned successfully although sturgeon chub Macrhybopsis gelida released unfertilized eggs. All temperature and hormone treatments produced M. meeki spawns, but two treatments had similar success rates at 44 and 43%, consisting of a constant daily temperature with no hormone added, or daily temperature fluctuations with hormone added to the water. Spawns consisted of multiple successful demersal circular swimming spawning embraces interspersed with circular swims without embraces. The most spawns observed for one female was four and on average, 327 eggs were collected after each spawn. The water-hardened eggs were semi-buoyant and non-adhesive, the first confirmation of this type of reproductive guild in the Missouri River Macrhybopsis sp. From spawn, larvae swam vertically until 123 accumulated degree days (° D) and 167° D for consumption of first food. Using average water speed and laboratory development time, the predicted drift distance for eggs and larvae could be 468–592 km in the lower Missouri River. Results from this study determined the reproductive biology and early life history of Macrhybopsis spp. and provided insight into their population dynamics in the Missouri River.

Assessment of phytoplankton resources suitable for bigheaded carps in Lake Michigan derived from remote sensing and bioenergetics

Released June 28, 2017 00:00 EST

2017, Journal of Great Lakes Research (43) 90-99

Karl R. Anderson, Duane C. Chapman, Tim T. Wynne, Craig Paukert

We used bioenergetic simulations combined with satellite-measured water temperature and estimates of algal food availability to predict the habitat suitability of Lake Michigan for adult silver carp (Hypophthalmichthys molitrix) and bighead carp (H. nobilis). Depending on water temperature, we found that bigheaded carp require ambient algal concentrations between 1 and 7 μg chlorophyll/L or between 0.25 × 105 and 1.20 × 105 cells/mL Microcystis to maintain body weight. When the bioenergetics model is forced with the observed average annual temperature cycle, our simulations predicted silver carp bioenergetics predicted annual weight change ranging from 9% weight loss to 23% gain; bighead carp ranged from 68 to 177% weight gain. Algal concentrations b4 μg chlorophyll/L and b200,000 cells/mL were below the detection limits of the remote sensing method. However, all areas with detectable algae have sufficient concentrations of algal foods for bigheaded carp weight-maintenance and growth. Those areas are predominately along the nearshore areas.

Designing a solution to enable agency-academic scientific collaboration for disasters

Released June 28, 2017 00:00 EST

2017, Ecology and Society (22)

Lindley A. Mease, Theodora Gibbs-Plessl, Ashley Erickson, Kristin A. Ludwig, Christopher M. Reddy, Jane Lubchenco

As large-scale environmental disasters become increasingly frequent and more severe globally, people and organizations that prepare for and respond to these crises need efficient and effective ways to integrate sound science into their decision making. Experience has shown that integrating nongovernmental scientific expertise into disaster decision making can improve the quality of the response, and is most effective if the integration occurs before, during, and after a crisis, not just during a crisis. However, collaboration between academic, government, and industry scientists, decision makers, and responders is frequently difficult because of cultural differences, misaligned incentives, time pressures, and legal constraints. Our study addressed this challenge by using the Deep Change Method, a design methodology developed by Stanford ChangeLabs, which combines human-centered design, systems analysis, and behavioral psychology. We investigated underlying needs and motivations of government agency staff and academic scientists, mapped the root causes underlying the relationship failures between these two communities based on their experiences, and identified leverage points for shifting deeply rooted perceptions that impede collaboration. We found that building trust and creating mutual value between multiple stakeholders before crises occur is likely to increase the effectiveness of problem solving. We propose a solution, the Science Action Network, which is designed to address barriers to scientific collaboration by providing new mechanisms to build and improve trust and communication between government administrators and scientists, industry representatives, and academic scientists. The Science Action Network has the potential to ensure cross-disaster preparedness and science-based decision making through novel partnerships and scientific coordination.

Daily reservoir sedimentation model: Case study from the Fena Valley Reservoir, Guam

Released June 28, 2017 00:00 EST

2017, Journal of Hydraulic Engineering (143)

Mathieu D. Marineau, Scott A. Wright

A model to compute reservoir sedimentation rates at daily timescales is presented. The model uses streamflow and sediment load data from nearby stream gauges to obtain an initial estimate of sediment yield for the reservoir’s watershed; it is then calibrated to the total deposition calculated from repeat bathymetric surveys. Long-term changes to reservoir trapping efficiency are also taken into account. The model was applied to the Fena Valley Reservoir, a water supply reservoir on the island of Guam. This reservoir became operational in 1951 and was recently surveyed in 2014. The model results show that the highest rate of deposition occurred during two typhoons (Typhoon Alice in 1953 and Typhoon Tingting in 2004); each storm decreased reservoir capacity by approximately 2–3% in only a few days. The presented model can be used to evaluate the impact of an extreme event, or it can be coupled with a watershed runoff model to evaluate potential impacts to storage capacity as a result of climate change or other hydrologic modifications.

Parcels versus pixels: modeling agricultural land use across broad geographic regions using parcel-based field boundaries

Released June 28, 2017 00:00 EST

2017, Journal of Land Use Science (12) 197-217

Terry L. Sohl, Jordan Dornbierer, Steve Wika, Kristi L. Sayler, Robert Quenzer

Land use and land cover (LULC) change occurs at a local level within contiguous ownership and management units (parcels), yet LULC models primarily use pixel-based spatial frameworks. The few parcel-based models being used overwhelmingly focus on small geographic areas, limiting the ability to assess LULC change impacts at regional to national scales. We developed a modified version of the Forecasting Scenarios of land use change model to project parcel-based agricultural change across a large region in the United States Great Plains. A scenario representing an agricultural biofuel scenario was modeled from 2012 to 2030, using real parcel boundaries based on contiguous ownership and land management units. The resulting LULC projection provides a vastly improved representation of landscape pattern over existing pixel-based models, while simultaneously providing an unprecedented combination of thematic detail and broad geographic extent. The conceptual approach is practical and scalable, with potential use for national-scale projections.

A hybrid machine learning model to predict and visualize nitrate concentration throughout the Central Valley aquifer, California, USA

Released June 28, 2017 00:00 EST

2017, Science of the Total Environment (601-602) 1160-1172

Katherine M. Ransom, Bernard T. Nolan, Jonathan A. Traum, Claudia Faunt, Andrew M. Bell, Jo Ann M. Gronberg, David C. Wheeler, Celia Zamora, Bryant Jurgens, Gregory Schwarz, Kenneth Belitz, Sandra Eberts, George Kourakos, Thomas Harter

Intense demand for water in the Central Valley of California and related increases in groundwater nitrate concentration threaten the sustainability of the groundwater resource. To assess contamination risk in the region, we developed a hybrid, non-linear, machine learning model within a statistical learning framework to predict nitrate contamination of groundwater to depths of approximately 500 m below ground surface. A database of 145 predictor variables representing well characteristics, historical and current field and landscape-scale nitrogen mass balances, historical and current land use, oxidation/reduction conditions, groundwater flow, climate, soil characteristics, depth to groundwater, and groundwater age were assigned to over 6000 private supply and public supply wells measured previously for nitrate and located throughout the study area. The boosted regression tree (BRT) method was used to screen and rank variables to predict nitrate concentration at the depths of domestic and public well supplies. The novel approach included as predictor variables outputs from existing physically based models of the Central Valley. The top five most important predictor variables included two oxidation/reduction variables (probability of manganese concentration to exceed 50 ppb and probability of dissolved oxygen concentration to be below 0.5 ppm), field-scale adjusted unsaturated zone nitrogen input for the 1975 time period, average difference between precipitation and evapotranspiration during the years 1971–2000, and 1992 total landscape nitrogen input. Twenty-five variables were selected for the final model for log-transformed nitrate. In general, increasing probability of anoxic conditions and increasing precipitation relative to potential evapotranspiration had a corresponding decrease in nitrate concentration predictions. Conversely, increasing 1975 unsaturated zone nitrogen leaching flux and 1992 total landscape nitrogen input had an increasing relative impact on nitrate predictions. Three-dimensional visualization indicates that nitrate predictions depend on the probability of anoxic conditions and other factors, and that nitrate predictions generally decreased with increasing groundwater age.

Probability calculations for three-part mineral resource assessments

Released June 27, 2017 11:25 EST

2017, Techniques and Methods 7-C15

Karl J. Ellefsen

Three-part mineral resource assessment is a methodology for predicting, in a specified geographic region, both the number of undiscovered mineral deposits and the amount of mineral resources in those deposits. These predictions are based on probability calculations that are performed with computer software that is newly implemented. Compared to the previous implementation, the new implementation includes new features for the probability calculations themselves and for checks of those calculations. The development of the new implementation lead to a new understanding of the probability calculations, namely the assumptions inherent in the probability calculations. Several assumptions strongly affect the mineral resource predictions, so it is crucial that they are checked during an assessment. The evaluation of the new implementation leads to new findings about the probability calculations,namely findings regarding the precision of the computations,the computation time, and the sensitivity of the calculation results to the input.

User’s guide for MapMark4—An R package for the probability calculations in three-part mineral resource assessments

Released June 27, 2017 11:25 EST

2017, Techniques and Methods 7-C14

Karl J. Ellefsen

MapMark4 is a software package that implements the probability calculations in three-part mineral resource assessments. Functions within the software package are written in the R statistical programming language. These functions, their documentation, and a copy of this user’s guide are bundled together in R’s unit of shareable code, which is called a “package.” This user’s guide includes step-by-step instructions showing how the functions are used to carry out the probability calculations. The calculations are demonstrated using test data, which are included in the package.

California Spotted Owl (Strix occidentalis occidentalis) habitat use patterns in a burned landscape

Released June 27, 2017 00:00 EST

2017, The Condor (119) 375-388

Stephanie Eyes, Susan L. Roberts, Matthew D. Johnson

Fire is a dynamic ecosystem process of mixed-conifer forests of the Sierra Nevada, but there is limited scientific information addressing wildlife habitat use in burned landscapes. Recent studies have presented contradictory information regarding the effects of stand-replacing wildfires on Spotted Owls (Strix occidentalis) and their habitat. While fire promotes heterogeneous forest landscapes shown to be favored by owls, high severity fire may create large canopy gaps that can fragment the closed-canopy habitat preferred by Spotted Owls. We used radio-telemetry to determine whether foraging California Spotted Owls (S. o. occidentalis) in Yosemite National Park, California, USA, showed selection for particular fire severity patch types within their home ranges. Our results suggested that Spotted Owls exhibited strong habitat selection within their home ranges for locations near the roost and edge habitats, and weak selection for lower fire severity patch types. Although owls selected high contrast edges with greater relative probabilities than low contrast edges, we did not detect a statistical difference between these probabilities. Protecting forests from stand-replacing fires via mechanical thinning or prescribed fire is a priority for management agencies, and our results suggest that fires of low to moderate severity can create habitat conditions within California Spotted Owls' home ranges that are favored for foraging.

Trace element contamination in feather and tissue samples from Anna’s hummingbirds

Released June 27, 2017 00:00 EST

2017, Ecological Indicators (80) 96-105

Nicole A. Mikoni, Robert H. Poppenga, Joshua T. Ackerman, Janet E. Foley, Jenny Hazlehurst, Güthrum Purdin, Linda Aston, Sabine Hargrave, Karen Jelks, Lisa A. Tell

Trace element contamination (17 elements; Be, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Ba, Hg, Tl, and Pb) of live (feather samples only) and deceased (feather and tissue samples) Anna's hummingbirds (Calypte anna) was evaluated. Samples were analyzed using inductively coupled plasma-mass spectrometry (ICP-MS; 17 elements) and atomic absorption spectrophotometry (Hg only). Mean plus one standard deviation (SD) was considered the benchmark, and concentrations above the mean + 1 SD were considered elevated above normal. Contour feathers were sampled from live birds of varying age, sex, and California locations. In order to reduce thermal impacts, minimal feathers were taken from live birds, therefore a novel method was developed for preparation of low mass feather samples for ICP-MS analysis. The study found that the novel feather preparation method enabled small mass feather samples to be analyzed for trace elements using ICP-MS. For feather samples from live birds, all trace elements, with the exception of beryllium, had concentrations above the mean + 1 SD. Important risk factors for elevated trace element concentrations in feathers of live birds were age for iron, zinc, and arsenic, and location for iron, manganese, zinc, and selenium. For samples from deceased birds, ICP-MS results from body and tail feathers were correlated for Fe, Zn, and Pb, and feather concentrations were correlated with renal (Fe, Zn, Pb) or hepatic (Hg) tissue concentrations. Results for AA spectrophotometry analyzed samples from deceased birds further supported the ICP-MS findings where a strong correlation between mercury concentrations in feather and tissue (pectoral muscle) samples was found. These study results support that sampling feathers from live free-ranging hummingbirds might be a useful, non-lethal sampling method for evaluating trace element exposure and provides a sampling alternative since their small body size limits traditional sampling of blood and tissues. The results from this study provide a benchmark for the distribution of trace element concentrations in feather and tissue samples from hummingbirds and suggests a reference mark for exceeding normal. Lastly, pollinating avian species are minimally represented in the literature as bioindicators for environmental trace element contamination. Given that trace elements can move through food chains by a variety of routes, our study indicates that hummingbirds are possible bioindicators of environmental trace element contamination.

Essential information: Uncertainty and optimal control of Ebola outbreaks

Released June 27, 2017 00:00 EST

2017, Proceedings of the National Academy of Sciences of the United States of America (114) 5659-5664

Shou-Li Li, Ottar Bjornstad, Matthew J. Ferrari, Riley Mummah, Michael C. Runge, Christopher J. Fonnesbeck, Michael J. Tildesley, William J. M. Probert, Katriona Shea

Early resolution of uncertainty during an epidemic outbreak can lead to rapid and efficient decision making, provided that the uncertainty affects prioritization of actions. The wide range in caseload projections for the 2014 Ebola outbreak caused great concern and debate about the utility of models. By coding and running 37 published Ebola models with five candidate interventions, we found that, despite this large variation in caseload projection, the ranking of management options was relatively consistent. Reducing funeral transmission and reducing community transmission were generally ranked as the two best options. Value of information (VoI) analyses show that caseloads could be reduced by 11% by resolving all model-specific uncertainties, with information about model structure accounting for 82% of this reduction and uncertainty about caseload only accounting for 12%. Our study shows that the uncertainty that is of most interest epidemiologically may not be the same as the uncertainty that is most relevant for management. If the goal is to improve management outcomes, then the focus of study should be to identify and resolve those uncertainties that most hinder the choice of an optimal intervention. Our study further shows that simplifying multiple alternative models into a smaller number of relevant groups (here, with shared structure) could streamline the decision-making process and may allow for a better integration of epidemiological modeling and decision making for policy.

Water contents of clinopyroxenes from sub-arc mantle peridotites

Released June 27, 2017 00:00 EST

2017, Island Arc

Michael Turner, Simon Turner, Dawnika Blatter, Rene Maury, Michael Perfit, Gene Yogodzinski

One poorly constrained reservoir of the Earth's water budget is that of clinopyroxene in metasomatised, mantle peridotites. This study presents reconnaissance Sensitive High-Resolution, Ion Microprobe–Stable Isotope (SHRIMP–SI) determinations of the H2O contents of (dominantly) clinopyroxenes in rare mantle xenoliths from four different subduction zones, i.e. Mexico, Kamchatka, Philippines, and New Britain (Tabar-Feni island chain) as well as one intra-plate setting (western Victoria). All of the sub-arc xenoliths have been metasomatised and carry strong arc trace element signatures. Average measured H2O contents of the pyroxenes range from 70 ppm to 510 ppm whereas calculated bulk H2O contents range from 88 ppm to 3 737 ppm if the variable presence of amphibole is taken into account. In contrast, the intra-plate, continental mantle xenolith from western Victoria has higher water contents (3 447 ppm) but was metasomatised by alkali and/or carbonatitic melts and does not carry a subduction-related signature. Material similar to the sub-arc peridotites can either be accreted to the base of the lithosphere or potentially be transported by convection deeper into the mantle where it will lose water due to amphibole breakdown.

U-Pb ages and geochemistry of zircon from Proterozoic plutons of the Sawatch and Mosquito ranges, Colorado, U.S.A.: Implications for crustal growth of the central Colorado province

Released June 27, 2017 00:00 EST

2017, Rocky Mountain Geology (52) 17-106

Richard J. Moscati, Wayne R. Premo, Ed Dewitt, Joseph L. Wooden

A broad study of zircons from plutonic rocks of the Sawatch and Mosquito ranges of west-central Colorado (U.S.A.) was undertaken to significantly refine the magmatic chronology and chemistry of this under-studied region of the Colorado province. This region was chosen because it lies just to the north of the suspected arc-related Gunnison-Salida volcano-plutonic terrane, which has been the subject of many recent investigations—and whose origin is still debated. Our new results provide important insights into the processes active during Proterozoic crustal evolution in this region, and they have important ramifications for broader-scope crustal evolution models for southwestern North America.

Twenty-four new U-Pb ages and sequentially acquired rare-earth element (REE), U, Th, and Hf contents of zircon have been determined using the sensitive high-resolution ion microprobe-reverse geometry (SHRIMP-RG). These zircon geochemistry data, in conjunction with whole-rock major- and trace-element data, provide important insights into zircon crystallization and melt fractionation, and they help to further constrain the tectonic environment of magma generation.

Our detailed zircon and whole-rock data support the following three interpretations:

(1) The Roosevelt Granite in the southern Sawatch Range was the oldest rock dated at 1,766 ± 7 Ma, and it intruded various metavolcanic and metasedimentary rocks. Geochemistry of both whole-rock and zircon supports the contention that this granite was produced in a magmatic arc environment and, therefore, is likely an extension of the older Dubois Greenstone Belt of the Gunnison Igneous Complex (GIC) and the Needle Mountains (1,770–1,755 Ma). Rocks of the younger Cochetopa succession of the GIC, the Salida Greenstone Belt, and the Sangre de Cristo Mountains (1,740–1,725 Ma) were not found in the Sawatch and Mosquito ranges. This observation strongly suggests that the northern edge of the Gunnison-Salida arc terrane underlies the southern portion of the Sawatch and Mosquito ranges.

(2) Calc-alkalic to alkali-calcic magmas intruded this region approximately 55 m.y. after the Roosevelt Granite with emplacement of pre-deformational plutons at ca. 1,710 Ma (e.g., Henry Mountain Granite and diorite of Denny Creek), and this continued for at least 30 m.y., ending with emplacement of post-deformational plutons at ca. 1,680 Ma (e.g., Kroenke Granodiorite, granite of Fairview Peak, and syenite of Mount Yale). The timing of deformation can be constrained to sometime after intrusion of the diorite of Denny Creek and likely before the emplacement of the undeformed granite of Fairview Peak. Geochemistry of both whole-rock and zircon indicates that the older group of ca. 1,710-Ma plutons formed at shallower depths, and then they intruded the younger group of more deeply generated, commonly peraluminous and sodic plutons. Although absent in the Sawatch and Mosquito ranges, Mazatzal-age (ca. 1,680–1,620 Ma) plutonic rocks are present regionally. Inherited zircon components of Mazatzal-age were found as cores in some 1.4-Ga Sawatch and Mosquito Range zircons, indicating the likelihood of a relatively local source. These combined data suggest the possibility that all were produced within a continental-margin magmatic arc created as a result of southward-migrating (slab rollback?), north-dipping subduction to the south of the region.

(3) Widespread Mesoproterozoic plutonism—with emplacement at various depths and exhibiting bimodal geochemistry—is recognized in 16 different samples. An older group of predominantly peraluminous, yet magnesian granitoids (e.g., granodiorite of Sayers, granite of Taylor River, and the St. Kevin Granite) were emplaced between ca. 1,450 and 1,425 Ma. These geochemical parameters suggest moderate degrees of partial melting in a low-pressure environment. Three younger metaluminous, but ferroan plutons (diorite of Grottos, diorite of Mount Elbert, and granodiorite of Mount Harvard), probably represent a final magmatic pulse at ca. 1,416 Ma.

A comprehensive treatment of zircon REE and whole-rock trace-element behavior from Proterozoic rocks is scarce. Discriminant U/Yb versus Y diagrams using zircon data show that the Sawatch and Mosquito plutons are of continental origin, not oceanic. Additional bivariate diagrams incorporating cation ratio combinations of Gd, Ce, Yb, U, Th, Hf, and Eu offer refined insight into differences in fractionation trends and depth of magma generation for the various plutons. These interpretations, on the basis of zircon trace-element data, are mirrored in the whole-rock geochemistry data.

Light climate and dissolved organic carbon concentration influence species-specific changes in fish zooplanktivory

Released June 27, 2017 00:00 EST

2017, Inland Waters (7) 210-217

Brian C. Weidel, Katherine Baglini, Stuart E. Jones, Patrick T. Kelly, Christopher T. Solomon, Jacob A. Zwart

Dissolved organic carbon (DOC) in lakes reduces light penetration and limits fish production in low nutrient lakes, reportedly via reduced primary and secondary production. Alternatively, DOC and light reductions could influence fish by altering their visual feeding. Previous studies report mixed effects of DOC on feeding rates of zooplanktivorous fish, but most investigators tested effects of a single concentration of DOC against clear-water, turbid, or algal treatments. We used a controlled laboratory study to quantify the effects of a DOC gradient (3–19 mg L−1) on average light climate and the zooplankton feeding rate of 3 common, north temperate fishes. Light availability, which was inversely related to DOC concentration, had a positive and linear effect on zooplankton consumption by juvenile largemouth bass (Micropterus salmoides) and bluegill (Lepomis macrochirus), explaining 22% and 28% of the variation in consumption, respectively. By contrast, zooplankton feeding rates by fathead minnow (Pimephales promelas) were best predicted by a nonlinear, negative influence of light (R2 = 0.13). In bluegill feeding trials we found a general trend for positive selection of larger zooplankton (Cladocera and Chaoboridae); however, the light climate did not influence the selection of prey type. Largemouth bass selected for larger-bodied zooplankton, with weak evidence that selectivity for large Cladocera changed from negative to neutral selection based on electivity values across the light gradient. Our results suggest that the effect of DOC on the light climate of lakes may directly influence fish zooplanktivory and that this influence may vary among fish species.

The contribution of lakes to global inland fisheries harvest

Released June 27, 2017 00:00 EST

2017, Frontiers in Ecology and the Environment

Andrew M. Deines, David Bunnell, Mark W. Rogers, David Bennion, Whitney Woelmer, Michael J. Sayers, Amanda G. Grimm, Robert A. Shuchman, Zachary B. Raymer, Colin N. Brooks, Justin G. Mychek-Londer, William W. Taylor, Douglas Beard

Freshwater ecosystems provide numerous services for communities worldwide, including irrigation, hydropower, and municipal water; however, the services provided by inland fisheries – nourishment, employment, and recreational opportunities – are often comparatively undervalued. We provide an independent estimate of global lake harvest to improve biological and socioeconomic assessments of inland fisheries. On the basis of satellite-derived estimates of chlorophyll concentration from 80,012 globally distributed lakes, lake-specific fishing effort based on human population, and output from a Bayesian hierarchical model, we estimated that the global lake fishery harvest in the year 2011 was 8.4 million tons (mt). Our calculations excluded harvests from highly productive rivers, wetlands, and very small lakes; therefore, the true cumulative global fishery harvest from all freshwater sources likely exceeded 11 mt as reported by the Food and Agriculture Organization of the United Nations (FAO). This putative underestimate by the FAO could diminish the perceived importance of inland fisheries and perpetuate decisions that adversely affect these fisheries and millions of people.

The Neogene genus Streptochilus (Brönnimann and Resig, 1971) from the Gulf of California

Released June 27, 2017 00:00 EST

2017, Marine Micropaleontology (132) 35-52

A.Y. Miranda Martínez, A.L. Carreño, Kristin McDougall

Four species of the planktonic foraminiferal genus Streptochilus from key Neogene marine localities are documented in relation to the evolution of the Gulf of California: S. globigerus, S. latus, S. macdougallae sp. nov., and S. inglei sp. nov. Planktonic foraminiferal bioevents and strontium isotopes in the Bouse, Tirabuzón, Carmen and Ojo de Buey lithostratigraphic units constrain the local distribution range between 6 and 5.3 Ma for the last three species, whereas S. globigerus appears locally at 5.5 Ma and disappears between 3.79 and 3.46 Ma in the Imperial and Trinidad Formations. The last occurrence of Streptochilus latus, and the first and last occurrences of S. globigerus in the ancient Gulf of California are correlated with bioevents calibrated in the equatorial Pacific; therefore, they can be used as reliable local biostratigraphic markers. The presence of Streptochilus in the ancient Gulf of California seems to correlate with upwelling, in a pattern similar to that observed in the modern oceans.

Description of gravity cores from San Pablo Bay and Carquinez Strait, San Francisco Bay, California

Released June 27, 2017 00:00 EST

2017, Open-File Report 2017-1078

Donald L. Woodrow, John L. Chin, Florence L. Wong, Theresa Fregoso, Bruce E. Jaffe

Seventy-two gravity cores were collected by the U.S. Geological Survey in 1990, 1991, and 2000 from San Pablo Bay and Carquinez Strait, California. The gravity cores collected within San Pablo Bay contain bioturbated laminated silts and sandy clays, whole and broken bivalve shells (mostly mussels), fossil tube structures, and fine-grained plant or wood fragments. Gravity cores from the channel wall of Carquinez Strait east of San Pablo Bay consist of sand and clay layers, whole and broken bivalve shells (less than in San Pablo Bay), trace fossil tubes, and minute fragments of plant material.

Field-trip guide to subaqueous volcaniclastic facies in the Ancestral Cascades arc in southern Washington State—The Ohanapecosh Formation and Wildcat Creek beds

Released June 27, 2017 00:00 EST

2017, Scientific Investigations Report 2017-5022-B

Martin Jutzeler, Jocelyn McPhie

Partly situated in the idyllic Mount Rainier National Park, this field trip visits exceptional examples of Oligocene subaqueous volcaniclastic successions in continental basins adjacent to the Ancestral Cascades arc. The >800-m-thick Ohanapecosh Formation (32–26 Ma) and the >300-m-thick Wildcat Creek (27 Ma) beds record similar sedimentation processes from various volcanic sources. Both show evidence of below-wave-base deposition, and voluminous accumulation of volcaniclastic facies from subaqueous density currents and suspension settling. Eruption-fed facies include deposits from pyroclastic flows that crossed the shoreline, from tephra fallout over water, and from probable Surtseyan eruptions, whereas re-sedimented facies comprise subaqueous density currents and debris flow deposits.

Optimal hydrograph separation using a recursive digital filter constrained by chemical mass balance, with application to selected Chesapeake Bay watersheds

Released June 26, 2017 10:15 EST

2017, Scientific Investigations Report 2017-5034

Jeff P. Raffensperger, Anna C. Baker, Joel D. Blomquist, Jessica A. Hopple

Quantitative estimates of base flow are necessary to address questions concerning the vulnerability and response of the Nation’s water supply to natural and human-induced change in environmental conditions. An objective of the U.S. Geological Survey National Water-Quality Assessment Project is to determine how hydrologic systems are affected by watershed characteristics, including land use, land cover, water use, climate, and natural characteristics (geology, soil type, and topography). An important component of any hydrologic system is base flow, generally described as the part of streamflow that is sustained between precipitation events, fed to stream channels by delayed (usually subsurface) pathways, and more specifically as the volumetric discharge of water, estimated at a measurement site or gage at the watershed scale, which represents groundwater that discharges directly or indirectly to stream reaches and is then routed to the measurement point.

Hydrograph separation using a recursive digital filter was applied to 225 sites in the Chesapeake Bay watershed. The recursive digital filter was chosen for the following reasons: it is based in part on the assumption that groundwater acts as a linear reservoir, and so has a physical basis; it has only two adjustable parameters (alpha, obtained directly from recession analysis, and beta, the maximum value of the base-flow index that can be modeled by the filter), which can be determined objectively and with the same physical basis of groundwater reservoir linearity, or that can be optimized by applying a chemical-mass-balance constraint. Base-flow estimates from the recursive digital filter were compared with those from five other hydrograph-separation methods with respect to two metrics: the long-term average fraction of streamflow that is base flow, or base-flow index, and the fraction of days where streamflow is entirely base flow. There was generally good correlation between the methods, with some biased slightly high and some biased slightly low compared to the recursive digital filter. There were notable differences between the days at base flow estimated by the different methods, with the recursive digital filter having a smaller range of values. This was attributed to how the different methods determine cessation of quickflow (the part of streamflow which is not base flow).

For 109 Chesapeake Bay watershed sites with available specific conductance data, the parameters of the filter were optimized using a chemical-mass-balance constraint and two different models for the time-dependence of base-flow specific conductance. Sixty-seven models were deemed acceptable and the results compared well with non-optimized results. There are a number of limitations to the optimal hydrograph-separation approach resulting from the assumptions implicit in the conceptual model, the mathematical model, and the approach taken to impose chemical mass balance (including tracer choice). These limitations may be evidenced by poor model results; conversely, poor model fit may provide an indication that two-component separation does not adequately describe the hydrologic system’s runoff response.

The results of this study may be used to address a number of questions regarding the role of groundwater in understanding past changes in stream-water quality and forecasting possible future changes, such as the timing and magnitude of land-use and management practice effects on stream and groundwater quality. Ongoing and future modeling efforts may benefit from the estimates of base flow as calibration targets or as a means to filter chemical data to model base-flow loads and trends. Ultimately, base-flow estimation might provide the basis for future work aimed at improving the ability to quantify groundwater discharge, not only at the scale of a gaged watershed, but at the scale of individual reaches as well.

Using dynamic population simulations to extend resource selection analyses and prioritize habitats for conservation

Released June 26, 2017 00:00 EST

2017, Ecological Modelling

Julie Heinrichs, Cameron Aldridge, Michael O'Donnell, Nathan Schumaker

Prioritizing habitats for conservation is a challenging task, particularly for species with fluctuating populations and seasonally dynamic habitat needs. Although the use of resource selection models to identify and prioritize habitat for conservation is increasingly common, their ability to characterize important long-term habitats for dynamic populations are variable. To examine how habitats might be prioritized differently if resource selection was directly and dynamically linked with population fluctuations and movement limitations among seasonal habitats, we constructed a spatially explicit individual-based model for a dramatically fluctuating population requiring temporally varying resources. Using greater sage-grouse (Centrocercus urophasianus) in Wyoming as a case study, we used resource selection function maps to guide seasonal movement and habitat selection, but emergent population dynamics and simulated movement limitations modified long-term habitat occupancy. We compared priority habitats in RSF maps to long-term simulated habitat use. We examined the circumstances under which the explicit consideration of movement limitations, in combination with population fluctuations and trends, are likely to alter predictions of important habitats. In doing so, we assessed the future occupancy of protected areas under alternative population and habitat conditions. Habitat prioritizations based on resource selection models alone predicted high use in isolated parcels of habitat and in areas with low connectivity among seasonal habitats. In contrast, results based on more biologically-informed simulations emphasized central and connected areas near high-density populations, sometimes predicted to be low selection value. Dynamic models of habitat use can provide additional biological realism that can extend, and in some cases, contradict habitat use predictions generated from short-term or static resource selection analyses. The explicit inclusion of population dynamics and movement propensities via spatial simulation modeling frameworks may provide an informative means of predicting long-term habitat use, particularly for fluctuating populations with complex seasonal habitat needs. Importantly, our results indicate the possible need to consider habitat selection models as a starting point rather than the common end point for refining and prioritizing habitats for protection for cyclic and highly variable populations.

Tolerance to disturbance regulated by attractiveness of resources: A case study of desert bighorn sheep within the River Mountains, Nevada

Released June 26, 2017 00:00 EST

2017, Western North American Naturalist (77) 82-98

Chris E. Lowrey, Kathleen Longshore

Human activity may mimic predation risks for wildlife by causing abandonment of foraging sites and increasing expenditure of energy. Animals that can tolerate nonlethal disturbance may minimize these fitness costs. We examine this aspect of the risk—disturbance hypothesis by first analyzing recent habitat use of desert bighorn sheep relative to areas of attraction and disturbance. We then compare and contrast sheep responses to differing levels of anthropogenic disturbance between 2 time periods, 30 years apart. Desert bighorn sheep were tolerant of suburban activity when a consistent forage resource (municipal grass) was provided. Males were more tolerant than females, and females returned to natural, steep areas during the birthing season. Increased recreation activity, specifically mountain bike use, may have resulted in avoidance by sheep of otherwise suitable habitat that had been occupied decades earlier, thereby reducing availability of limited habitat. Tolerance increased only when attractiveness was relatively high and decreased as perceived fitness decreased, supporting risk—disturbance theory.

In-vitro replication of Chelonid herpesvirus 5 in organotypic skin cultures from Hawaiian green turtles (Chelonia mydas)

Released June 26, 2017 00:00 EST

2017, Journal of Virology

Thierry M. Work, Julie Dagenais, Tina Weatherby, Mathias Ackermann, George H. Balazs

Fibropapillomatosis (FP) is a tumor disease of marine turtles associated with Chelonid herpesvirus 5 (ChHV5) that has historically been refractory to growth in tissue culture. Here, we show for the first time de novo formation of ChHV5-positive intranuclear inclusions in cultured green turtle cells, which is indicative for active lytic replication of the virus. The minimal requirements to achieve lytic replication in cultured cells included 1) either in-vitro culturing of ChHV5-positive tumor biopsies (plugs) or organotypic cultures (rafts) consisting of ChHV5-positive turtle fibroblasts in collagen rafts seeded with turtle keratinocytes and 2) keratinocyte maturation induced by raising raft or biopsy cultures to the air-liquid interface. Virus growth was confirmed by detailed electron microscopic studies revealing intranuclear sun-shaped capsid factories, tubules, various stages of capsid formation, nuclear export by budding into the perinuclear space, tegumentation, and envelopment to complete de novo virus production. Membrane synthesis was also observed as a sign for active viral replication. Interestingly, cytoplasmic particles became associated with keratin filaments, a feature not seen in conventional monolayer cell cultures where most studies of herpesvirus replication have been performed. Our findings draw a rich and realistic picture of ChHV5 replication in cells derived from its natural host and may be crucial not only to better understand ChHV5 circulation but also to eventually complete Koch's postulates for FP. Moreover, the principles described here may serve as model to culture other viruses that are resistant to replication in conventional cell culture.

Use of electricity to sedate Lake Trout for intracoelomic implantation of electronic transmitters

Released June 26, 2017 00:00 EST

2017, North American Journal of Fisheries Management (37) 768-777

Matthew D. Faust, Christopher Vandergoot, Eric T. Hostnik, Thomas R. Binder, Julia L. Mida Hinderer, Jessica T. Ives, Charles Conrad Krueger

Use of telemetry data to inform fisheries conservation and management is becoming increasingly common; as such, fish typically must be sedated before surgical implantation of transmitters into the coelom. Given that no widely available, immediate-release chemical sedative currently exists in North America, we investigated the feasibility of using electricity to sedate Lake Trout Salvelinus namaycush long enough for an experienced surgeon to implant an electronic transmitter (i.e., 180 s). Specifically, our study objectives were to determine (1) whether some combination of electrical waveform characteristics (i.e., duty cycle, frequency, voltage, and pulse type) could sedate Lake Trout for at least 180 s; and (2) whether Lake Trout that were sequentially exposed to continuous DC and pulsed DC had greater rates of spinal injury and short-term mortality than control fish. A Portable Electrosedation System unit was used to sedate hatchery and wild Lake Trout. Dual-frequency pulsed-DC and two-stage approaches successfully sedated Lake Trout and had similar induction and recovery times. Lake Trout sedated using the two-stage approach did not have survival rates or spinal abnormalities that were significantly different from those of control fish. We concluded that electricity was a viable alternative to chemical sedatives for sedating Lake Trout before surgical implantation of an electronic transmitter, but we suggest that Lake Trout and other closely related species (e.g., Arctic Char Salvelinus alpinus) may require morphotype-specific electrical waveforms due to their morphological diversity.

Sedimentology, sequence-stratigraphy, and geochemical variations in the Mesoproterozoic Nonesuch Formation, northern Wisconsin, USA

Released June 26, 2017 00:00 EST

2017, Precambrian Research (294) 111-132

Esther Kingsbury Stewart, Jeffrey L. Mauk

We use core descriptions and portable X-ray fluorescence analyses to identify lithofacies and stratigraphic surfaces for the Mesoproterozoic Nonesuch Formation within the Ashland syncline, Wisconsin. We group lithofacies into facies associations and construct a sequence stratigraphic framework based on lithofacies stacking and stratigraphic surfaces. The fluvial-alluvial facies association (upper Copper Harbor Conglomerate) is overlain across a transgressive surface by the fluctuating-profundal facies association (lower Nonesuch Formation). The fluctuating-profundal facies association comprises a retrogradational sequence set overlain across a maximum flooding surface by an aggradational-progradational sequence set comprising fluctuating-profundal, fluvial-lacustrine, and fluvial-alluvial facies associations (middle Nonesuch through lower Freda Formations). Lithogeochemistry supports sedimentologic and stratigraphic interpretations. Fe/S molar ratios reflect the oxidation state of the lithofacies; values are most depleted above the maximum flooding surface where lithofacies are chemically reduced and are greatest in the chemically oxidized lithofacies. Si/Al and Zr/Al molar ratios reflect the relative abundance of detrital heavy minerals vs. clay minerals; greater values correlate with larger grain size. Vertical facies association stacking records depositional environments that evolved from fluvial and alluvial, to balanced-fill lake, to overfilled lake, and returning to fluvial and alluvial. Elsewhere in the basin, where accommodation was greatest, some volume of fluvial-lacustrine facies is likely present below the transgressive stratigraphic surface. This succession of continental and lake-basin types indicates a predominant tectonic driver of basin evolution. Lithofacies distribution and geochemistry indicate deposition within an asymmetric half-graben bounded on the east by a west-dipping growth fault. While facies assemblages are lacustrine and continental, periodic marine incursions are probable, especially across maximum transgressive surfaces.

We demonstrate a sequence-stratigraphic approach may be applied to fine-grained Precambrian sediments using traditional rock description and supporting lithogeochemistry. Identification of a characteristic lithofacies succession in Mesoproterozoic sediments demonstrates fundamental controls commonly interpreted for Phanerozoic lake systems may be extended into the Precambrian. These controls result in a predictable association of lithofacies, with distinct physical, biological, and geochemical properties. This has regional significance for carbon sequestration and the distribution of mineral and hydrocarbon resources and broader significance for addressing Mesoproterozoic paleogeographic reconstructions and questions related to the evolution of terrestrial life.

Highlighting the complexities of a groundwater pilot study during an avian influenza outbreak: Methods, lessons learned, and select contaminant results

Released June 26, 2017 00:00 EST

2017, Environmental Research (158) 212-224

Laura E. Hubbard, Dana W. Kolpin, Chad L. Fields, Michelle Hladik, Luke Iwanowicz

The highly pathogenic avian influenza (H5N2) outbreak in the Midwestern United States (US) in 2015 was historic due to the number of birds and poultry operations impacted and the corresponding economic loss to the poultry industry and was the largest animal health emergency in US history. The U.S. Geological Survey (USGS), with the assistance of several state and federal agencies, aided the response to the outbreak by developing a study to determine the extent of virus transport in the environment. The study goals were to: develop the appropriate sampling methods and protocols for measuring avian influenza virus (AIV) in groundwater, provide the first baseline data on AIV and outbreak- and poultry-related contaminant occurrence and movement into groundwater, and document climatological factors that may have affected both survival and transport of AIV to groundwater during the months of the 2015 outbreak. While site selection was expedient, there were often delays in sample response times due to both relationship building between agencies, groups, and producers and logistical time constraints. This study's design and sampling process highlights the unpredictable nature of disease outbreaks and the corresponding difficulty in environmental sampling of such events. The lessons learned, including field protocols and approaches, can be used to improve future research on AIV in the environment.

Spatial and temporal distribution of bull trout (Salvelinus confluentus)-size fish near the floating surface collector in the North Fork Reservoir, Oregon, 2016

Released June 26, 2017 00:00 EST

2017, Open-File Report 2017-1080

Noah S. Adams, Collin D. Smith

Acoustic cameras were used to assess the behavior and abundance of bull trout (Salvelinus confluentus)-size fish at the entrance to the North Fork Reservoir juvenile fish floating surface collector (FSC). The purpose of the FSC is to collect downriver migrating juvenile salmonids at the North Fork Dam, and safely route them around the hydroelectric projects. The objective of the acoustic camera component of this study was to assess the behaviors of bull trout-size fish observed near the FSC, and to determine if the presence of bull trout-size fish influenced the collection or abundance of juvenile salmonids. Acoustic cameras were deployed near the surface and floor of the entrance to the FSC. The acoustic camera technology was an informative tool for assessing abundance and spatial and temporal behaviors of bull trout-size fish near the entrance of the FSC. Bull trout-size fish were regularly observed near the entrance, with greater abundances on the deep camera than on the shallow camera. Additionally, greater abundances were observed during the hours of sunlight than were observed during the night. Behavioral differences also were observed at the two depths, with surface fish traveling faster and straighter with more directed movement, and fish observed on the deep camera generally showing more milling behavior. Modeling potential predator-prey interactions and influences using collected passive integrated transponder (PIT) -tagged juvenile salmonids proved largely unpredictable, although these fish provided relevant timing and collection information. Overall, the results indicate that bull trout-size fish are present near the entrance of the FSC, concomitant with juvenile salmonids, and their abundances and behaviors indicate that they may be drawn to the entrance of the FSC because of the abundance of prey-sized fish.

Streamflow alteration at selected sites in Kansas

Released June 26, 2017 00:00 EST

2017, Scientific Investigations Report 2017-5046

Kyle E. Juracek, Ken Eng

An understanding of streamflow alteration in response to various disturbances is necessary for the effective management of stream habitat for a variety of species in Kansas. Streamflow alteration can have negative ecological effects. Using a modeling approach, streamflow alteration was assessed for 129 selected U.S. Geological Survey streamgages in the State for which requisite streamflow and basin-characteristic information was available. The assessment involved a comparison of the observed condition from 1980 to 2015 with the predicted expected (least-disturbed) condition for 29 streamflow metrics. The metrics represent various characteristics of streamflow including average flow (annual, monthly) and low and high flow (frequency, duration, magnitude).

Streamflow alteration in Kansas was indicated locally, regionally, and statewide. Given the absence of a pronounced trend in annual precipitation in Kansas, a precipitation-related explanation for streamflow alteration was not supported. Thus, the likely explanation for streamflow alteration was human activity. Locally, a flashier flow regime (typified by shorter lag times and more frequent and higher peak discharges) was indicated for three streamgages with urbanized basins that had higher percentages of impervious surfaces than other basins in the State. The combination of localized reservoir effects and regional groundwater pumping from the High Plains aquifer likely was responsible, in part, for diminished conditions indicated for multiple streamflow metrics in western and central Kansas. Statewide, the implementation of agricultural land-management practices to reduce runoff may have been responsible, in part, for a diminished duration and magnitude of high flows. In central and eastern Kansas, implemented agricultural land-management practices may have been partly responsible for an inflated magnitude of low flows at several sites.

Sanitary quality of surface water during base-flow conditions in the Municipality of Caguas, Puerto Rico, 2014–15: A comparison with results from a similar 1997–99 study

Released June 26, 2017 00:00 EST

2017, Scientific Investigations Report 2017-5045

Jesús Rodríguez-Martínez, Senén Guzmán-Ríos

A study was conducted in 2014–15 by the U.S. Geological Survey (USGS), in cooperation with the Municipality of Caguas, to determine if changes in the stream sanitary quality during base-flow conditions have occurred since 1997–99, when a similar study was completed by the USGS. Water samples were collected for the current study during two synoptic surveys in 2014 and 2015. Water samples were analyzed for fecal and total coliform bacteria, nitrate plus nitrite as nitrogen, nitrogen and oxygen isotopes of nitrate, and human health and pharmaceutical products. Water sampling occurred at 39 stream locations used during the 1997–99 study by the USGS and at 11 additional sites. A total of 151 stream miles were classified on the basis of fecal and total coliform bacteria results.

The overall spatial pattern of the sanitary quality of surface water during 2014–15 is similar to the pattern observed in 1997–99 in relation to the standards adopted by the Puerto Rico Environmental Quality Board in 1990. Surface water at most of the water-sampling sites exceeded the current standard for fecal coliform of 200 colonies per 100 milliliters adopted by the Puerto Rico Environmental Quality Board in 2010. The poorest sanitary quality was within the urban area of the Municipality of Caguas, particularly in urban stream reaches of Río Caguitas and in rural and suburban reaches bordered by houses in high density that either have inadequate septic tanks or discharge domestic wastewater directly into the stream channels. The best sanitary quality occurred in areas having little or no human development, such as in the wards of San Salvador and Beatriz to the south and southwest of Caguas, respectively. The concentration of nitrate plus nitrite as nitrogen ranged from 0.02 to 9.0 milligrams per liter, and did not exceed the U.S. Environmental Protection Agency drinking-water standard for nitrate as nitrogen of 10 milligrams per liter. The composition of nitrogen and oxygen isotopes of nitrate indicates that the origin of nitrate in the streams is most likely animal and human waste. A baseline was established for the concentrations of selected human health and pharmaceutical products at stations in some of the streams within the Municipality of Caguas. Thirty-eight human health and pharmaceutical products were present at or above the measurement detection level.

Sylvatic plague vaccine partially protects prairie dogs (Cynomys spp.) in field trials

Released June 24, 2017 00:00 EST

2017, EcoHealth

Tonie E. Rocke, Daniel W. Tripp, Robin E. Russell, Rachel C. Abbott, Katherine Richgels, Marc R. Matchett, Dean E. Biggins, Randall Griebel, Greg Schroeder, Shaun M. Grassel, David R. Pipkin, Jennifer Cordova, Adam Kavalunas, Brian Maxfield, Jesse Boulerice, Michael W. Miller

Sylvatic plague, caused by Yersinia pestis, frequently afflicts prairie dogs (Cynomys spp.), causing population declines and local extirpations. We tested the effectiveness of bait-delivered sylvatic plague vaccine (SPV) in prairie dog colonies on 29 paired placebo and treatment plots (1–59 ha in size; average 16.9 ha) in 7 western states from 2013 to 2015. We compared relative abundance (using catch per unit effort (CPUE) as an index) and apparent survival of prairie dogs on 26 of the 29 paired plots, 12 with confirmed or suspected plague (Y. pestis positive carcasses or fleas). Even though plague mortality occurred in prairie dogs on vaccine plots, SPV treatment had an overall positive effect on CPUE in all three years, regardless of plague status. Odds of capturing a unique animal were 1.10 (95% confidence interval [C.I.] 1.02–1.19) times higher per trap day on vaccine-treated plots than placebo plots in 2013, 1.47 (95% C.I. 1.41–1.52) times higher in 2014 and 1.19 (95% C.I. 1.13–1.25) times higher in 2015. On pairs where plague occurred, odds of apparent survival were 1.76 (95% Bayesian credible interval [B.C.I.] 1.28–2.43) times higher on vaccine plots than placebo plots for adults and 2.41 (95% B.C.I. 1.72–3.38) times higher for juveniles. Our results provide evidence that consumption of vaccine-laden baits can protect prairie dogs against plague; however, further evaluation and refinement are needed to optimize SPV use as a management tool.

Assessment of water and proppant quantities associated with petroleum production from the Bakken and Three Forks Formations, Williston Basin Province, Montana and North Dakota, 2016

Released June 23, 2017 18:25 EST

2017, Fact Sheet 2017-3044

Seth S. Haines, Brian A. Varela, Sarah J. Hawkins, Nicholas J. Gianoutsos, Joanna N. Thamke, Mark A. Engle, Marilyn E. Tennyson, Christopher J. Schenk, Stephanie B. Gaswirth, Kristen R. Marra, Scott A. Kinney, Tracey J. Mercier, Cericia D. Martinez

The U.S. Geological Survey (USGS) has completed an assessment of water and proppant requirements and water production associated with the possible future production of undiscovered oil and gas resources in the Three Forks and Bakken Formations (Late Devonian to Early Mississippian) of the Williston Basin Province in Montana and North Dakota. This water and proppant assessment is directly linked to the geology-based assessment of the undiscovered, technically recoverable continuous oil and gas resources that is described in USGS Fact Sheet 2013–3013.

Scanning and georeferencing historical USGS quadrangles

Released June 23, 2017 13:30 EST

2017, Fact Sheet 2017-3048

Kristin A. Fishburn, Larry R. Davis, Gregory J. Allord

The U.S. Geological Survey (USGS) National Geospatial Program is scanning published USGS 1:250,000-scale and larger topographic maps printed between 1884, the inception of the topographic mapping program, and 2006. The goal of this project, which began publishing the Historical Topographic Map Collection in 2011, is to provide access to a digital repository of USGS topographic maps that is available to the public at no cost. For more than 125 years, USGS topographic maps have accurately portrayed the complex geography of the Nation. The USGS is the Nation’s largest producer of traditional topographic maps, and, prior to 2006, USGS topographic maps were created using traditional cartographic methods and printed using a lithographic process. The next generation of topographic maps, US Topo, is being released by the USGS in digital form, and newer technologies make it possible to also deliver historical maps in the same electronic format that is more publicly accessible.

US Topo—Topographic maps for the Nation

Released June 23, 2017 12:45 EST

2017, Fact Sheet 2017-3045

Kristin A. Fishburn, William J. Carswell Jr.

Building on the success of 125 years of mapping, the U.S. Geological Survey created US Topo, a georeferenced digital map produced from The National Map data. US Topo maps are designed to be used like the traditional 7.5-minute quadrangle paper topographic maps for which the U.S. Geological Survey is so well known. However, in contrast to paper-based maps, US Topo maps provide modern technological advantages that support faster, wider public distribution and basic, onscreen geospatial analysis, including the georeferencing capability to display the ground coordinate location as the user moves the cursor around the map.

Evidence of fuels management and fire weather influencing fire severity in an extreme fire event

Released June 23, 2017 00:00 EST

2017, Ecological Applications

Jamie M Lydersen, Brandon M. Collins, Matthew L. Brooks, John R. Matchett, Kristen L. Shive, Nicholas A. Povak, Van R. Kane, Douglas F. Smith

Following changes in vegetation structure and pattern, along with a changing climate, large wildfire incidence has increased in forests throughout the western U.S. Given this increase there is great interest in whether fuels treatments and previous wildfire can alter fire severity patterns in large wildfires. We assessed the relative influence of previous fuels treatments (including wildfire), fire weather, vegetation and water balance on fire severity in the Rim Fire of 2013. We did this at three different spatial scales to investigate whether the influences on fire severity changed across scales. Both fuels treatments and previous low to moderate severity wildfire reduced the prevalence of high severity fire. In general, areas without recent fuels treatments and areas that previously burned at high severity tended to have a greater proportion of high severity fire in the Rim Fire. Areas treated with prescribed fire, especially when combined with thinning, had the lowest proportions of high severity. Proportion of the landscape burned at high severity was most strongly influenced by fire weather and proportional area previously treated for fuels or burned by low to moderate severity wildfire. The proportion treated needed to effectively reduce the amount of high fire severity fire varied by spatial scale of analysis, with smaller spatial scales requiring a greater proportion treated to see an effect on fire severity. When moderate and high severity fire encountered a previously treated area, fire severity was significantly reduced in the treated area relative to the adjacent untreated area. Our results show that fuels treatments and low to moderate severity wildfire can reduce fire severity in a subsequent wildfire, even when burning under fire growth conditions. These results serve as further evidence that both fuels treatments and lower severity wildfire can increase forest resilience.

The Niobrara Formation as a challenge to water quality in the Arkansas River, Colorado, USA

Released June 23, 2017 00:00 EST

2017, Journal of Hydrology: Regional Studies (12) 181-195

Carleton Bern, Robert W. Stogner

Study region

Arkansas River, east of the Rocky Mountains.

Study focus

Cretaceous sedimentary rocks in the western United States generally pose challenges to water quality, often through mobilization of salts and trace metals by irrigation. However, in the Arkansas River Basin of Colorado, patchy exposure of multiple Cretaceous formations has made it difficult to identify which formations are most problematic. This paper examines water quality in surface-water inflows along a 26-km reach of the Arkansas River relative to the presence or absence of the Cretaceous Niobrara Formation within the watershed.

New hydrological insights for the region

Principal component analysis (PCA) shows Niobrara-influenced inflows have distinctive geochemistry, particularly with respect to Na, Mg, SO42−, and Se. Uranium concentrations are also greater in Niobrara-influenced inflows. During the irrigation season, median dissolved solids, Se, and U concentrations in Niobrara-influenced inflows were 83%, 646%, and 55%, respectively, greater than medians where Niobrara Formation surface exposures were absent. During the non-irrigation season, which better reflects geologic influence, the differences were more striking. Median dissolved solids, Se, and U concentrations in Niobrara-influenced inflows were 288%, 863%, and 155%, respectively, greater than median concentrations where the Niobrara Formation was absent. Identification of the Niobrara Formation as a disproportionate source for dissolved solids, Se, and U will allow for more targeted studies and management, particularly where exposures underlie irrigated agriculture.

Payments for carbon sequestration to alleviate development pressure in a rapidly urbanizing region

Released June 23, 2017 00:00 EST

2017, Forest Science (63) 270-282

Jordan W. Smith, Monica Dorning, Douglas A. Shoemaker, Andréanne Méley, Lauren Dupey, Ross K. Meentemeyer

The purpose of this study was to determine individuals' willingness to enroll in voluntary payments for carbon sequestration programs through the use of a discrete choice experiment delivered to forest owners living in the rapidly urbanizing region surrounding Charlotte, North Carolina. We examined forest owners' willingness to enroll in payments for carbon sequestration policies under different levels of financial incentives (annual revenue), different contract lengths, and different program administrators (e.g., private companies versus a state or federal agency). We also examined the influence forest owners' sense of place had on their willingness to enroll in hypothetical programs. Our results showed a high level of ambivalence toward participating in payments for carbon sequestration programs. However, both financial incentives and contract lengths significantly influenced forest owners' intent to enroll. Neither program administration nor forest owners' sense of place influenced intent to enroll. Although our analyses indicated that payments from carbon sequestration programs are not currently competitive with the monetary returns expected from timber harvest or property sales, certain forest owners might see payments for carbon sequestration programs as a viable option for offsetting increasing tax costs as development encroaches and property values rise.

Prevalence of Batrachochytrium dendrobatidis and B. salamandrivorans in the Gulf Coast Waterdog, Necturus beyeri, from Southeast Louisiana, USA

Released June 23, 2017 00:00 EST

2017, Herpetological Review (48) 360-363

Brad M. Glorioso, Hardin Waddle, Corinne L. Richards-Zawacki

The globally widespread amphibian fungal pathogen Batrachochytrium dendrobatidis (Bd) has been linked to amphibian declines worldwide (Lips et al. 2006; Skerratt et al. 2007). In Louisiana, USA, Bd has been found in several amphibian species (Chatfield et al. 2012; Rothermel et al. 2008), but to our knowledge no population-level die-offs have been observed. Published literature on Bd prevalence in Louisiana is scant for some amphibian species and completely absent for many others. This trend is likely driven by the perception that Bd is not a major problem in this area due to a lack of observed dieoffs attributable to chytridiomycosis.

Field-trip guides to selected volcanoes and volcanic landscapes of the western United States

Released June 23, 2017 00:00 EST

2017, Scientific Investigations Report 2017-5022

U.S. Geological Survey

The North American Cordillera is home to a greater diversity of volcanic provinces than any comparably sized region in the world. The interplay between changing plate-margin interactions, tectonic complexity, intra-crustal magma differentiation, and mantle melting have resulted in a wealth of volcanic landscapes.  Field trips in this guide book collection (published as USGS Scientific Investigations Report 2017–5022) visit many of these landscapes, including (1) active subduction-related arc volcanoes in the Cascade Range; (2) flood basalts of the Columbia Plateau; (3) bimodal volcanism of the Snake River Plain-Yellowstone volcanic system; (4) some of the world’s largest known ignimbrites from southern Utah, central Colorado, and northern Nevada; (5) extension-related volcanism in the Rio Grande Rift and Basin and Range Province; and (6) the eastern Sierra Nevada featuring Long Valley Caldera and the iconic Bishop Tuff.  Some of the field trips focus on volcanic eruptive and emplacement processes, calling attention to the fact that the western United States provides opportunities to examine a wide range of volcanological phenomena at many scales.

The 2017 Scientific Assembly of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI) in Portland, Oregon, was the impetus to update field guides for many of the volcanoes in the Cascades Arc, as well as publish new guides for numerous volcanic provinces and features of the North American Cordillera. This collection of guidebooks summarizes decades of advances in understanding of magmatic and tectonic processes of volcanic western North America. 

These field guides are intended for future generations of scientists and the general public as introductions to these fascinating areas; the hope is that the general public will be enticed toward further exploration and that scientists will pursue further field-based research.

Juvenile salmonid monitoring in the White Salmon River, Washington, post-Condit Dam removal, 2016

Released June 23, 2017 00:00 EST

2017, Open-File Report 2017-1070

Ian G. Jezorek, Jill M. Hardiman

Condit Dam, at river kilometer 5.3 on the White Salmon River, Washington, was breached in 2011 and removed completely in 2012, allowing anadromous salmonids access to habitat that had been blocked for nearly 100 years. A multi-agency workgroup concluded that the preferred salmonid restoration alternative was natural recolonization with monitoring to assess efficacy, followed by a management evaluation 5 years after dam removal. Limited monitoring of salmon and steelhead spawning has occurred since 2011, but no monitoring of juveniles occurred until 2016. During 2016, we operated a rotary screw trap at river kilometer 2.3 (3 kilometers downstream of the former dam site) from late March through May and used backpack electrofishing during summer to assess juvenile salmonid distribution and abundance. The screw trap captured primarily steelhead (Oncorhynchus mykiss; smolts, parr, and fry) and coho salmon (O. kisutch; smolts and fry). We estimated the number of steelhead smolts at 3,851 (standard error = 1,454) and coho smolts at 1,093 (standard error = 412). In this document, we refer to O. mykiss caught at the screw trap as steelhead because they were actively migrating, but because we did not know migratory status of O. mykiss caught in electrofishing surveys, we simply refer to them as O. mykiss or steelhead/rainbow trout. Steelhead and coho smolts tagged with passive integrated transponder tags were subsequently detected downstream at Bonneville Dam on the Columbia River. Few Chinook salmon (O. tshawytscha) fry were captured, possibly as a result of trap location or effects of a December 2015 flood. Sampling in Mill, Buck, and Rattlesnake Creeks (all upstream of the former dam site) showed that juvenile coho were present in Mill and Buck Creeks, suggesting spawning had occurred there. We compared O. mykiss abundance data in sites on Buck and Rattlesnake Creeks to pre-dam removal data. During 2016, age-0 O. mykiss were more abundant in Buck Creek than in 2009 or 2010, though age-1 and older O. mykiss abundance was similar. In Rattlesnake Creek, age-0 O. mykiss abundance during 2016 slightly exceeded the mean abundance from 2001 through 2005, although age-1 and older O. mykiss abundance was lower than from 2001 through 2005. These sampling efforts also provided the opportunity to collect genetic samples to investigate parental and stock origin, although funding to analyze the samples was not part of this grant. Juvenile salmonid sampling efforts during 2016 have shown that natural spawning produced steelhead and coho smolts and that coho were colonizing some tributaries. The 2016 efforts also provided the first post-dam juvenile abundance estimates. We hope to continue monitoring to better understand abundance trends, distribution, and life history patterns of recolonizing salmonids in the White Salmon River to assess efficacy of natural recolonization and to inform management decisions.

PhasePApy: A robust pure Python package for automatic identification of seismic phases

Released June 23, 2017 00:00 EST

2016, Seismological Research Letters (87) 1384-1396

Chen Chen, Austin Holland

We developed a Python phase identification package: the PhasePApy for earthquake data processing and near‐real‐time monitoring. The package takes advantage of the growing number of Python libraries including Obspy. All the data formats supported by Obspy can be supported within the PhasePApy. The PhasePApy has two subpackages: the PhasePicker and the Associator, aiming to identify phase arrival onsets and associate them to phase types, respectively. The PhasePicker and the Associator can work jointly or separately. Three autopickers are implemented in the PhasePicker subpackage: the frequency‐band picker, the Akaike information criteria function derivative picker, and the kurtosis picker. All three autopickers identify picks with the same processing methods but different characteristic functions. The PhasePicker triggers the pick with a dynamic threshold and can declare a pick with false‐pick filtering. Also, the PhasePicker identifies a pick polarity and uncertainty for further seismological analysis, such as focal mechanism determination. Two associators are included in the Associator subpackage: the 1D Associator and 3D Associator, which assign phase types to picks that can best fit potential earthquakes by minimizing root mean square (rms) residuals of the misfits in distance and time, respectively. The Associator processes multiple picks from all channels at a seismic station and aggregates them to increase computational efficiencies. Both associators use travel‐time look up tables to determine the best estimation of the earthquake location and evaluate the phase type for picks. The PhasePApy package has been used extensively for local and regional earthquakes and can work for active source experiments as well.