Modern sedimentation on the shoreface and inner continental shelf at wrightsville beach, North Carolina, U.S.A

Journal of Sedimentary Research
By: , and 


  • The Publications Warehouse does not have links to digital versions of this publication at this time
  • Download citation as: RIS | Dublin Core


The geologic framework and surficial morphology of the shoreface and inner continental shelf off the Wrightsville Beach, North Carolina, barrier island were mapped using high-resolution sidescansonar, bathyme??trie, and seismic-reflection surveying techniques, a suite of over 200 diver vibracores, and extensive seafloor observations by divers. The inner shelf is a sediment-starved, active surface of marine erosion; modern sediments, where present, form a patchy veneer over Tertiary and Quaternary units. The lithology of the underlying units exerts a primary control on the distribution, texture, and composition of surficial sediments, as well as inner-shelf bathymetry. The shoreface is dominated by a linear, cross-shore morphology of rippled scour depressions (RSDs) extending from just seaward of the surf zone onto the inner shelf. On the upper shoreface, the RSDs are incised up to l m below surrounding areas of fine sand, and have an asymmetric cross section that is steeper-sided to the north. On the inner shelf, the RSDs have a similar but more subdued cross-sectional profile. The depressions are floored primarily by shell hash and quartz gravel. Vibracore data show a thick (up to 1.5 m) sequence of RSD sediments that unconformably overlies ancient coastal lithosomes. In this sediment-starved inner shelf setting, rippled scour depressions probably form initially on preexisting coarse-sediment substrates such as modern lag deposits of paleofluvial channel lithosomes or ancient tidal inlet thalwegs. Interannual observations of seafloor morphologic change and the longer-term record contained in vibracores suggest that the present seafloor morphology is either relatively stable or represents a recurring, preferential morphologic state to which the seafloor returns after storm-induced perturbations. The apparent stability is interpreted to be the result of interactions at several scales that contribute to a repeating, self-reinforcing pattern of forcing and sedimentary response which ultimately causes the RSDs to be maintained as sediment-starved bedforms responding to both along-shore and acrossshore flows. Sediment accumulation from over 30 years of extensive beach nourishment at Wrightsville Beach appears to have exceeded the local shoreface accommodation space, resulting in the "leaking" of beach and shoreface sediment to the inner shelf. A macroscopically identifiable beach nourishment sediment on the shoreface and inner shelf was used to identify the decadal-scale pattern of sediment dispersal. The nourishment sediment is present in a seaward-thinning wedge that extends from the beach over a kilometer onto the inner shelf to waters depths of 14 m. This wedge is best developed offshore of the shoreline segment that has received the greatest volume of beach nourishment. 

Additional publication details

Publication type Article
Publication Subtype Journal Article
Title Modern sedimentation on the shoreface and inner continental shelf at wrightsville beach, North Carolina, U.S.A
Series title Journal of Sedimentary Research
Volume 71
Issue 6
Year Published 2001
Language English
Contributing office(s) Woods Hole Coastal and Marine Science Center
Description 13 p.
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Journal of Sedimentary Research
First page 958
Last page 970
Google Analytic Metrics Metrics page
Additional metadata about this publication, not found in other parts of the page is in this table