Effect of acidity and elevated PCO2 on acid. Neutralization within pulsed limestone bed reactors receiving coal mine drainage

Environmental Engineering Science

, , and



Limestone has potential for reducing reagent costs and sludge volume associated with the treatment of acid mine drainage (AMD), but its use has been restricted by slow dissolution rates and sensitivity to scale forming reactions that retard transport of H+ at the solid-liquid interface. We evaluated a pulsed limestone bed (PLB) remediation process designed to circumvent these problems through use of intermittently fluidized beds of granular limestone and elevated carbon dioxide pressure. PLB limestone dissolution (LD, mg/L), and effluent alkalinity (Alk, mg/L) were correlated with reactor pressure (PCO2, kPa), influent acidity (Acy, mg/L) and reactor bed height (H, cm) using a prototype capable of processing 10 L/min. The PLB process effectively neutralized sulfuric acid acidity over the range of 6-1033 mg/L (as CaCO3) while generating high concentrations of alkalinity (36-1086 mg/L) despite a hydraulic residence time of just 4.2-5.0 min. Alk and LD (mg/L CaCO3) rose with increases in influent acidity and PCO2 (p < 0.001) according to the models: Alk = 58 + 38.4 (PCO2)0.5 + 0.080 (Acy) - 0.0059(PCO2) 0.5 (Acy); LD = 55 + 38.3 (PCO2)0.5 + 1.08 (Acy) - 0.0059 (PCO2)0.5 (Acy). Alkalinity decreased at an increasing rate with reductions in H over the range of 27.3-77.5 cm (p < 0.001). Carbon dioxide requirements (Q(avg)CO2, L/min) increased with PCO2 (p < 0.001) following the model Q(avg)CO2 = 0.858 (PCO2)0.620, resulting in a greater degree of pH buffering (depression) within the reactors, a rise in limestone solubility and an increase in limestone dissolution related to carbonic acid attack. Corresponding elevated concentrations of effluent alkalinity allow for sidestream treatment with blending. Numerical modeling demonstrated that carbon dioxide requirements are reduced as influent acidity rises and when carbon dioxide is recovered from system effluent and recycled. Field trials demonstrated that the PLB process is capable of raising the pH of AMD above that required for hydrolysis and precipitation of Fe3+ and Al 3+ but not Fe2+ and Mn2+.

Additional publication details

Publication type:
Publication Subtype:
Journal Article
Effect of acidity and elevated PCO2 on acid. Neutralization within pulsed limestone bed reactors receiving coal mine drainage
Series title:
Environmental Engineering Science
Year Published:
Larger Work Type:
Larger Work Subtype:
Journal Article
Larger Work Title:
Environmental Engineering Science
First page:
Last page: