Using magnetic susceptibility to facilitate more rapid, reproducible and precise delineation of hydric soils in the midwestern USA

By: , and 



Standard field indicators, currently used for hydric soil delineations [USDA-NRCS, 1998. Field indicators of hydric soils in the United States, Version 4.0. In: G.W. Hurt et al. (Ed.), United States Department of Agriculture-NRCS, Fort Worth, TX], are useful, but in some cases, they can be subjective, difficult to recognize, or time consuming to assess. Magnetic susceptibility (MS) measurements, acquired rapidly in the field with a portable meter, have great potential to help soil scientists delineate and map areas of hydric soils more precisely and objectively. At five sites in Illinois (from 5 to 15 ha in area) with contrasting soil types and glacial histories, the MS values of surface soils were measured along transects, and afterwards mapped and contoured. The MS values were found to be consistently higher in well-drained soils and lower in hydric soils, reflecting anaerobic deterioration of both detrital magnetite and soil-formed ferrimagnetics. At each site, volumetric MS values were statistically compared to field indicators to determine a critical MS value for hydric soil delineation. Such critical values range between 22??10-5 and 33??10-5 SI in silty loessal or alluvial soils in Illinois, but are as high as 61??10-5 SI at a site with fine sandy soil. A higher magnetite content and slower dissolution rate in sandy soils may explain the difference. Among sites with silty parent material, the lowest critical value (22??10-5 SI) occurs in soil with low pH (4.5-5.5) since acidic conditions are less favorable to ferrimagnetic mineral neoformation and enhance magnetite dissolution. Because of their sensitivity to parent material properties and soil pH, critical MS values must be determined on a site specific basis. The MS of studied soil samples (0-5 cm depth) is mainly controlled by neoformed ultrafine ferrimagnetics and detrital magnetite concentrations, with a minor contribution from anthropogenic fly ash. Neoformed ferrimagnetics are present in all samples but, based on high ??FD% (???5% to 10%), are most prevalent in high pH Mollisols of northeastern Illinois. Scanning electron microscope images display significantly more detrital magnetite alteration in hydric soils, substantiating that reductive dissolution of magnetite (aided by microorganisms) is a primary cause for lower MS. Fly ash comprises 8-50% of the >5 ??m strongly magnetic particles and typically accounts for 5-15% of the total MS signal. The proportion of fly ash in >5 ??m strongly magnetic fractions is greater in hydric soils because of lower natural magnetite contents, possibly combined with historical topsoil accumulation in lower landscapes. Magnetic fly ash particles are also more altered in low MS soils, implying that significant magnetite dissolution can occur in less than 150 years. ?? 2004 Elsevier B.V. All rights reserved.

Additional publication details

Publication type Article
Publication Subtype Journal Article
Title Using magnetic susceptibility to facilitate more rapid, reproducible and precise delineation of hydric soils in the midwestern USA
Series title Catena
DOI 10.1016/j.catena.2004.03.001
Volume 58
Issue 2
Year Published 2004
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Catena
First page 183
Last page 213
Google Analytic Metrics Metrics page
Additional metadata about this publication, not found in other parts of the page is in this table