An updated global earthquake catalogue for stable continental regions: Reassessing the correlation with ancient rifts

Geophysical Journal International
By:  and 

Links

Abstract

We present an updated global earthquake catalogue for stable continental regions (SCRs; i.e. intraplate earthquakes) that is available on the Internet. Our database contains information on location, magnitude, seismic moment and focal mechanisms for over 1300 M (moment magnitude) ≥ 4.5 historic and instrumentally recorded crustal events. Using this updated earthquake database in combination with a recently published global catalogue of rifts, we assess the correlation of intraplate seismicity with ancient rifts on a global scale. Each tectonic event is put into one of five categories based on location: (i) interior rifts/taphrogens, (ii) rifted continental margins, (iii) non-rifted crust, (iv) possible interior rifts and (v) possible rifted margins. We find that approximately 27 per cent of all events are classified as interior rifts (i), 25 per cent are rifted continental margins (ii), 36 per cent are within non-rifted crust (iii) and 12 per cent (iv and v) remain uncertain. Thus, over half (52 per cent) of all events are associated with rifted crust, although within the continental interiors (i.e. away from continental margins), non-rifted crust has experienced more earthquakes than interior rifts. No major change in distribution is found if only large (M ≥ 6.0) earthquakes are considered. The largest events (M ≥ 7.0) however, have occurred predominantly within rifts (50 per cent) and continental margins (43 per cent). Intraplate seismicity is not distributed evenly. Instead several zones of concentrated seismicity seem to exist. This is especially true for interior rifts/taphrogens, where a total of only 12 regions are responsible for 74 per cent of all events and as much as 98 per cent of all seismic moment released in that category. Of the four rifts/taphrogens that have experienced the largest earthquakes, seismicity within the Kutch rift, India, and the East China rift system, may be controlled by diffuse plate boundary deformation more than by the presence of the ancient rifts themselves. The St. Lawrence depression, Canada, besides being an ancient rift, is also the site of a major collisional suture. Thus only at the Reelfoot rift (New Madrid seismic zone, NMSZ, USA), is the presence of features associated with rifting itself the sole candidate for causing seismicity. Our results suggest that on a global scale, the correlation of seismicity within SCRs and ancient rifts has been overestimated in the past. Because the majority of models used to explain intraplate seismicity have focused on seismicity within rifts, we conclude that a shift in attention more towards non-rifted as well as rifted crust is in order.

Publication type Article
Publication Subtype Journal Article
Title An updated global earthquake catalogue for stable continental regions: Reassessing the correlation with ancient rifts
Series title Geophysical Journal International
DOI 10.1111/j.1365-246X.2005.02554.x
Volume 161
Issue 3
Year Published 2005
Language English
Publisher Oxford Academic
Contributing office(s) Earthquake Science Center
Description 15 p.
First page 707
Last page 721
Google Analytic Metrics Metrics page
Additional publication details