Use of flux and morphologic sediment budgets for sandbar monitoring on the Colorado River in Marble Canyon, Arizona

By: , and 



The magnitude and pfattern of streamflow and sediment supply of the Colorado River in Grand Canyon (Figure 1) has been affected by the existence and operations of Glen Canyon Dam since filling of Lake Powell Reservoir began in March 1963. In the subsequent 30 years, fine sediment was scoured from the downstream channel (Topping et al., 2000; Grams et al., 2007), resulting in a decline in the number and size of sandbars in the eastern half of Grand Canyon National Park (Wright et al., 2005; Schmidt et al., 2004). The Glen Canyon Dam Adaptive Management Program (GCDAMP) administered by the U.S. Department of Interior oversees efforts to manage the Colorado River ecosystem downstream from Glen Canyon Dam. One of the goals of the GCDAMP is to maintain and increase the number and size of sandbars in this context of a limited sand supply. Management actions to benefit sandbars have included curtailment of daily streamflow fluctuations, which occur for hydropower generation, and implementation of controlled floods, also called high-flow experiments.

Studies of controlled floods, defined as intentional releases that exceed the maximum discharge capacity of the Glen Canyon Dam powerplant, implemented between 1996 and 2008, have demonstrated that these events cause increases in sandbar size throughout Marble and Grand Canyons (Hazel et al., 2010; Schmidt and Grams, 2011; Mueller et al., 2014), although the magnitude of response is spatially variable (Hazel et al., 1999; 2010). Controlled floods may build some sandbars at the expense of erosion of sand from other, upstream, sandbars (Schmidt, 1999). To increase the frequency and effectiveness of sandbar building, the U.S. Department of Interior adopted a “high-flow experimental protocol” to implement controlled floods regularly under conditions of enriched sand supply (U.S. Department of Interior, 2012). Because the supply of sand available to build sandbars has been substantially reduced by Glen Canyon Dam (Topping et al., 2000) and depends entirely on infrequent tributary floods, monitoring of both sandbars and gross sand storage (the sand budget) is required to evaluate whether the high-flow protocol is having the intended effect of increasing sandbar size without progressively depleting sand from the system.

There are many challenges associated with monitoring sand storage and active sand deposits in a river system as large and complex as the 450-km segment of the Colorado River between Glen Canyon Dam and Lake Mead. Previous studies have demonstrated the temporal variation in sand storage associated with sand-supply limitation (Topping et al., 2000) and the spatial variability in the amount of sand stored in eddies and the channel associated with channel hydraulics (Grams et al., 2013). In this study, we report on companion measurements of sand flux and morphologic change to quantify, for the first time, the relation between changes in sand mass balance, changes in within-channel sand storage, and changes in sandbars comprehensively for a 50-km river segment of the Colorado River in lower Marble Canyon within Grand Canyon National Park.

We show that, when measured over the scale of a 50-km river segment, these complementary measurements of the sand budget agree within measurement uncertainty and provide a rare opportunity to integrate the temporally rich sand-flux record with the spatially rich morphologic measurements. Both methods show that sediment was evacuated from lower Marble Canyon over the 3-year study period. The flux-based budget shows the timing of changes in storage relative to dam-release patterns, while the morphologic measurements depict the spatial distribution of erosion and deposition among different depositional settings.

Study Area

Publication type Conference Paper
Publication Subtype Conference Paper
Title Use of flux and morphologic sediment budgets for sandbar monitoring on the Colorado River in Marble Canyon, Arizona
Year Published 2015
Language English
Publisher location Joint Federal Interagency Conference
Contributing office(s) Southwest Biological Science Center
Description 12 p.
Larger Work Type Book
Larger Work Subtype Conference publication
Larger Work Title Proceedings of the joint federal interagency conference 2015
First page 1144
Last page 1155
Conference Title 3rd Joint Federal Interagency Conference on Sedimentation and Hydrologic Modeling
Conference Location Reno, NV
Conference Date April 19-23, 2015
Country United States
State Arizona
Other Geospatial Colorado River, Lower Marble Canyon
Google Analytic Metrics Metrics page
Additional publication details