Moving environmental DNA methods from concept to practice for monitoring aquatic macroorganisms

Biological Conservation
By: , and 



The discovery that macroorganisms can be detected from their environmental DNA (eDNA) in aquatic systems has immense potential for the conservation of biological diversity. This special issue contains 11 papers that review and advance the field of eDNA detection of vertebrates and other macroorganisms, including studies of eDNA production, transport, and degradation; sample collection and processing to maximize detection rates; and applications of eDNA for conservation using citizen scientists. This body of work is an important contribution to the ongoing efforts to take eDNA detection of macroorganisms from technical breakthrough to established, reliable method that can be used in survey, monitoring, and research applications worldwide. While the rapid advances in this field are remarkable, important challenges remain, including consensus on best practices for collection and analysis, understanding of eDNA diffusion and transport, and avoidance of inhibition in sample collection and processing. Nonetheless, as demonstrated in this special issue, eDNA techniques for research and monitoring are beginning to realize their potential for contributing to the conservation of biodiversity globally.

Additional publication details

Publication type Article
Publication Subtype Journal Article
Title Moving environmental DNA methods from concept to practice for monitoring aquatic macroorganisms
Series title Biological Conservation
DOI 10.1016/j.biocon.2014.11.040
Volume 183
Year Published 2015
Language English
Publisher Elsevier
Contributing office(s) Forest and Rangeland Ecosystem Science Center
Description 3 p.
First page 1
Last page 3
Online Only (Y/N) N
Additional Online Files (Y/N) N
Google Analytic Metrics Metrics page
Additional metadata about this publication, not found in other parts of the page is in this table