U.S. Geological Survey's ShakeCast: A cloud-based future

By: , and 



When an earthquake occurs, the U. S. Geological Survey (USGS) ShakeMap portrays the extent of potentially damaging shaking. In turn, the ShakeCast system, a freely-available, post-earthquake situational awareness application, automatically retrieves earthquake shaking data from ShakeMap, compares intensity measures against users’ facilities, sends notifications of potential damage to responsible parties, and generates facility damage assessment maps and other web-based products for emergency managers and responders. ShakeCast is particularly suitable for earthquake planning and response purposes by Departments of Transportation (DOTs), critical facility and lifeline utilities, large businesses, engineering and financial services, and loss and risk modelers. Recent important developments to the ShakeCast system and its user base are described. The newly-released Version 3 of the ShakeCast system encompasses advancements in seismology, earthquake engineering, and information technology applicable to the legacy ShakeCast installation (Version 2). In particular, this upgrade includes a full statistical fragility analysis framework for general assessment of structures as part of the near real-time system, direct access to additional earthquake-specific USGS products besides ShakeMap (PAGER, DYFI?, tectonic summary, etc.), significant improvements in the graphical user interface, including a console view for operations centers, and custom, user-defined hazard and loss modules. The release also introduces a new adaption option to port ShakeCast to the "cloud". Employing Amazon Web Services (AWS), users now have a low-cost alternative to local hosting, by fully offloading hardware, software, and communication obligations to the cloud. Other advantages of the "ShakeCast Cloud" strategy include (1) Reliability and robustness of offsite operations, (2) Scalability naturally accommodated, (3), Serviceability, problems reduced due to software and hardware uniformity, (4) Testability, freely available for new users, (5) Remotely supported, allowing expert-facilitated maintenance, (6) Adoptability, simplified with disk images, and (7) Security, built in at the very high level associated with AWS. The ShakeCast user base continues to expand and broaden. For example, Caltrans, the prototypical ShakeCast user and development supporter, has been providing guidance to other DOTs on the use of the National Bridge Inventory (NBI) database to implement fully-functional ShakeCast systems in their states. A long-term goal underway is to further "connect the DOTs" via a Transportation Pooled Fund (TPF) with participating state DOTs. We also review some of the many other users and uses of ShakeCast. Lastly, on the hazard input front, we detail related ShakeMap improvements and ongoing advancements in estimating the likelihood of shaking-induced secondary hazards at structures, facilities, bridges, and along roadways due to landslides and liquefaction, and implemented within the ShakeCast framework.
Publication type Conference Paper
Publication Subtype Conference Paper
Title U.S. Geological Survey's ShakeCast: A cloud-based future
DOI 10.4231/D32Z12Q20
Year Published 2014
Language English
Publisher Network for Earthquake Engineering Simulation
Contributing office(s) Geologic Hazards Science Center
Description 11 p.
Google Analytic Metrics Metrics page
Additional publication details