Dispersal and spatial heterogeneity: Single species

Journal of Mathematical Biology
By: , and 



A recent result for a reaction-diffusion equation is that a population diffusing at any rate in an environment in which resources vary spatially will reach a higher total equilibrium biomass than the population in an environment in which the same total resources are distributed homogeneously. This has so far been proven by Lou for the case in which the reaction term has only one parameter, m(x)m(x), varying with spatial location xx, which serves as both the intrinsic growth rate coefficient and carrying capacity of the population. However, this striking result seems rather limited when applies to real populations. In order to make the model more relevant for ecologists, we consider a logistic reaction term, with two parameters, r(x)r(x) for intrinsic growth rate, and K(x)K(x) for carrying capacity. When r(x)r(x) and K(x)K(x) are proportional, the logistic equation takes a particularly simple form, and the earlier result still holds. In this paper we have established the result for the more general case of a positive correlation between r(x)r(x) and K(x)K(x) when dispersal rate is small. We review natural and laboratory systems to which these results are relevant and discuss the implications of the results to population theory and conservation ecology.

Publication type Article
Publication Subtype Journal Article
Title Dispersal and spatial heterogeneity: Single species
Series title Journal of Mathematical Biology
DOI 10.1007/s00285-015-0879-y
Volume 72
Issue 1
Year Published 2016
Language English
Publisher Springer
Contributing office(s) Wetland and Aquatic Research Center
Description 16 p.
First page 239
Last page 254
Google Analytic Metrics Metrics page
Additional publication details