Spatial elements of mortality risk in old-growth forests

By: , and 



For many species of long-lived organisms, such as trees, survival appears to be the most critical vital rate affecting population persistence. However, methods commonly used to quantify tree death, such as relating tree mortality risk solely to diameter growth, almost certainly do not account for important spatial processes. Our goal in this study was to detect and, if present, to quantify the relevance of such processes. For this purpose, we examined purely spatial aspects of mortality for four species, Abies concolor, Abies magnifica, Calocedrus decurrens, and Pinus lambertiana, in an old-growth conifer forest in the Sierra Nevada of California, USA. The analysis was performed using data from nine fully mapped long-term monitoring plots.

In three cases, the results unequivocally supported the inclusion of spatial information in models used to predict mortality. For Abies concolor, our results suggested that growth rate may not always adequately capture increased mortality risk due to competition. We also found evidence of a facilitative effect for this species, with mortality risk decreasing with proximity to conspecific neighbors. For Pinus lambertiana, mortality risk increased with density of conspecific neighbors, in keeping with a mechanism of increased pathogen or insect pressure (i.e., a Janzen-Connell type effect). Finally, we found that models estimating risk of being crushed were strongly improved by the inclusion of a simple index of spatial proximity.

Not only did spatial indices improve models, those improvements were relevant for mortality prediction. For P. lambertiana, spatial factors were important for estimation of mortality risk regardless of growth rate. For A. concolor, although most of the population fell within spatial conditions in which mortality risk was well described by growth, trees that died occurred outside those conditions in a disproportionate fashion. Furthermore, as stands of A. concolor become increasingly dense, such spatial factors are likely to become increasingly important. In general, models that fail to account for spatial pattern are at risk of failure as conditions change.

Publication type Article
Publication Subtype Journal Article
Title Spatial elements of mortality risk in old-growth forests
Series title Ecology
DOI 10.1890/07-0524.1
Volume 89
Issue 6
Year Published 2008
Language English
Publisher Ecological Society of America
Contributing office(s) Western Ecological Research Center
Description 13 p.
First page 1744
Last page 1756
Google Analytic Metrics Metrics page
Additional publication details