Isotopic composition of Pb in ore deposits of the Betic Cordillera, Spain; origin and relationship to other European deposits

Economic Geology
By:  and 



The Betic Cordillera in southern Spain is a complex Alpine fold belt that resulted from the Cretaceous through Cenozoic collision of Africa with Europe. The region is illustrative of one of the characteristics of the Alpine-Mediterranean orogen: the occurrence over a limited area of mineral deposits with a wide variety of host rocks, mineralization ages, and styles. The metamorphic basement in the Betic zone is characterized by a nappe structure of superimposed tectonostratigraphic units and consists of lower Paleozoic to Lower Triassic clastic metasedimentary rocks. This is overlain by Middle to Upper Triassic platform carbonate rocks with abundant strata-bound F-Pb-Zn-(Ba) deposits (e.g., Sierra de Gador, Sierra Alhamilla). Cretaceous to Paleogene subduction-related compression in southeastern Spain was followed by Miocene postcollisional extension and resulted in the formation of the Almeria-Cartagena volcanic belt and widespread hydrothermal activity and associated polymetallic mineralization. Typical Miocene hydrothermal deposits include volcanic-hosted Au (e.g., Rodalquilar) and Ag-rich base metal (e.g., Cabo de Gata, Mazarron) deposits as well as complex polymetallic veins, mantos, and irregular replacement bodies which are hosted by Paleozoic and Mesozoic metamorphic rocks and Neogene sedimentary and volcanic rocks (e.g., Cartagena, Sierra Almagrera, Sierra del Aguilon, Loma de Bas).Lead isotope compositions were measured on sulfide samples from nine ore districts and from representative fresh samples of volcanic and basement rock types of the region. The results have been used to evaluate ore-forming processes in southeastern Spain with emphasis on the sources of metals. During a Late Triassic mineralizing event, Pb was leached from Paleozoic clastic metasedimentary rocks and incorporated in galena in strata-bound F-Pb-Zn-(Ba) deposits ( 206 Pb/ 204 Pb = 18.332 + or - 12, 207Pb/ 204 Pb = 15.672 + or - 12, 208 Pb/ 204 Pb = 38.523 + or - 46). The second episode of mineralization was essentially contemporaneous (late Miocene) throughout the region and did not involve remobilization of less radiogenic Triassic ore Pb. Lead isotope data indicate a dominantly Paleozoic metasedimentary source for polymetallic vein- and manto-type deposits that formed by hydrothermal circulation through the Betic basement, driven by Miocene intrusions ( 206 Pb/ 204 Pb = 18.747 + or - 20, 207 Pb/ 204Pb = 15.685 + or - 9, 208 /Pb/ 204 Pb = 39.026 + or - 37). Lead in Au-(Cu-Te-Sn) ores is isotopically indistinguishable from that of the calc-alkalic volcanic host ( 206 Pb/ 204 Pb = 18.860 + or - 9, 207 Pb/ 204 Pb = 15.686 + or - 8, 208 Pb/ 204 Pb = 38.940 + or - 27). In contrast, the Pb in volcanic-hosted Pb-Zn-Cu-(Ag-Au) veins was derived from Paleozoic metamorphic and Miocene volcanic rocks ( 206 Pb/ 204 Pb = 18.786 + or - 5, 207 Pb/ 204 Pb = 15.686 + or - 2, 208 Pb/ 204 Pb = 38.967 + or - 9).A comparison of the Pb isotope data from southeastern Spain with published data from selected Pb-Zn deposits in southern Europe (including Les Malines, L'Argentiere, and the Alpine, Iglesiente-Sulcis, and Montagne Noire districts) indicates the importance of a metasedimentary basement as a common source of ore Pb.

Additional publication details

Publication type Article
Publication Subtype Journal Article
Title Isotopic composition of Pb in ore deposits of the Betic Cordillera, Spain; origin and relationship to other European deposits
Series title Economic Geology
DOI 10.2113/gsecongeo.89.5.1074
Volume 89
Issue 5
Year Published 1994
Language English
Publisher Society of Economic Geologists
Description 20 p.
First page 1074
Last page 1093