Cloud cover and delayed herbivory relative to timing of spring onset interact to dampen climate change impacts on net ecosystem exchange in a coastal Alaskan wetland

Environmental Research Letters
By: , and 

Links

Abstract

Rapid warming in northern ecosystems over the past four decades has resulted in earlier spring, increased precipitation, and altered timing of plant–animal interactions, such as herbivory. Advanced spring phenology can lead to longer growing seasons and increased carbon (C) uptake. Greater precipitation coincides with greater cloud cover possibly suppressing photosynthesis. Timing of herbivory relative to spring phenology influences plant biomass. None of these changes are mutually exclusive and their interactions could lead to unexpected consequences for Arctic ecosystem function. We examined the influence of advanced spring phenology, cloud cover, and timing of grazing on C exchange in the Yukon–Kuskokwim Delta of western Alaska for three years. We combined advancement of the growing season using passive-warming open-top chambers (OTC) with controlled timing of goose grazing (early, typical, and late season) and removal of grazing. We also monitored natural variation in incident sunlight to examine the C exchange consequences of these interacting forcings. We monitored net ecosystem exchange of C (NEE) hourly using an autochamber system. Data were used to construct daily light curves for each experimental plot and sunlight data coupled with a clear-sky model was used to quantify daily and seasonal NEE over a range of incident sunlight conditions. Cloudy days resulted in the largest suppression of NEE, reducing C uptake by approximately 2 g C m−2 d−1 regardless of the timing of the season or timing of grazing. Delaying grazing enhanced C uptake by approximately 3 g C m−2 d−1. Advancing spring phenology reduced C uptake by approximately 1.5 g C m−2 d−1, but only when plots were directly warmed by the OTCs; spring advancement did not have a long-term influence on NEE. Consequently, the two strongest drivers of NEE, cloud cover and grazing, can have opposing effects and thus future growing season NEE will depend on the magnitude of change in timing of grazing and incident sunlight.

Study Area

Additional publication details

Publication type Article
Publication Subtype Journal Article
Title Cloud cover and delayed herbivory relative to timing of spring onset interact to dampen climate change impacts on net ecosystem exchange in a coastal Alaskan wetland
Series title Environmental Research Letters
DOI 10.1088/1748-9326/ab1c91
Volume 14
Issue 8
Year Published 2019
Language English
Publisher IOPscience
Contributing office(s) Alaska Science Center Biology WTEB
Description 084030, 11 p.
Country United States
State Alaska