Spatial autoregressive models for statistical inference from ecological data

Ecological Monographs
By: , and 



Ecological data often exhibit spatial pattern, which can be modeled as autocorrelation. Conditional autoregressive (CAR) and simultaneous autoregressive (SAR) models are network‐based models (also known as graphical models) specifically designed to model spatially autocorrelated data based on neighborhood relationships. We identify and discuss six different types of practical ecological inference using CAR and SAR models, including: (1) model selection, (2) spatial regression, (3) estimation of autocorrelation, (4) estimation of other connectivity parameters, (5) spatial prediction, and (6) spatial smoothing. We compare CAR and SAR models, showing their development and connection to partial correlations. Special cases, such as the intrinsic autoregressive model (IAR), are described. Conditional autoregressive and SAR models depend on weight matrices, whose practical development uses neighborhood definition and row‐standardization. Weight matrices can also include ecological covariates and connectivity structures, which we emphasize, but have been rarely used. Trends in harbor seals (Phoca vitulina) in southeastern Alaska from 463 polygons, some with missing data, are used to illustrate the six inference types. We develop a variety of weight matrices and CAR and SAR spatial regression models are fit using maximum likelihood and Bayesian methods. Profile likelihood graphs illustrate inference for covariance parameters. The same data set is used for both prediction and smoothing, and the relative merits of each are discussed. We show the nonstationary variances and correlations of a CAR model and demonstrate the effect of row‐standardization. We include several take‐home messages for CAR and SAR models, including (1) choosing between CAR and IAR models, (2) modeling ecological effects in the covariance matrix, (3) the appeal of spatial smoothing, and (4) how to handle isolated neighbors. We highlight several reasons why ecologists will want to make use of autoregressive models, both directly and in hierarchical models, and not only in explicit spatial settings, but also for more general connectivity models.

Publication type Article
Publication Subtype Journal Article
Title Spatial autoregressive models for statistical inference from ecological data
Series title Ecological Monographs
DOI 10.1002/ecm.1283
Volume 88
Issue 1
Year Published 2019
Language English
Publisher Wiley
Contributing office(s) Coop Res Unit Seattle
Description 24 p.
First page 36
Last page 59
Google Analytic Metrics Metrics page
Additional publication details