A 3-year in-situ measurement of CO2 efflux in coastal wetlands: Understanding carbon loss through ecosystem respiration and its partitioning

Wetlands
By: , and 

Links

Abstract

Understanding the link between ecosystem respiration (Reco) and its influential factors is necessary to evaluate the sources of gaseous carbon loss in coastal wetlands. Seablite (Suaeda salsa Pall.) is the main vegetation type pioneering temperate coastal wetlands in northeast China, and is generally an understudied wetland type. To evaluate the influence of environmental factors on Reco, a multi-year in-situ experiment was carried out during the growing seasons of 2012 to 2014. Total CO2 efflux was measured and separated further into soil microbial and belowground root respiration (Rs + r) and plant respiration (Rplant). Reco displayed strong seasonal variation, with effluxes as high as 845 to 1150 mg CO2 m−2 h−1 during summer months and as low as 32 to 111 mg CO2 m−2 h−1 during spring (when new shoots are sprouting) and fall (when plants are senescing) months. Aboveground plant structures contributed on average 79% to total plant biomass, and accounted for most of the Reco measured; i.e., 62–96% was associated as Rplant. Plant activity was strongly seasonal, accordingly driving Reco, with 1 g of soil-emergent S. salsa biomass (dry weight) producing approximately 1.58 mg CO2 per hour toward Reco during mid-summer. When water level was below the soil surface, Rs + r was exponentially correlated to air temperature. Because Reco for S. salsa marsh in the Liaohe Delta is controlled by plant growth cycles, inundation regime, and air temperature, this finding may be applied for national carbon budget estimation purposes from S. salsa wetlands throughout Northeast China and potentially close a key gap in understanding the role of this large wetland area in contributing to respiratory CO2 emissions globally.

Additional publication details

Publication type Article
Publication Subtype Journal Article
Title A 3-year in-situ measurement of CO2 efflux in coastal wetlands: Understanding carbon loss through ecosystem respiration and its partitioning
Series title Wetlands
DOI 10.1007/s13157-019-01197-0
Year Published 2019
Language English
Publisher Springer
Contributing office(s) Wetland and Aquatic Research Center
Description 12 p.
First page 1
Last page 12