Holocene Sea-Level Variability from Chesapeake Bay Tidal Marshes

By: , and 



We reconstructed the last 10,000 years of Holocene relative sea-level rise (RSLR) from sediment core records in near Chesapeake Bay, eastern U.S.A., including new marsh records from the Potomac and Rappahannock Rivers, Virginia. Results show mean RSLR rates of 2.6 mm yr-1 from 10 to 8 kilo-annum (ka) due to combined final ice-sheet melting during deglaciation and glacio-isostatic adjustment (GIA subsidence). Mean RSLR rates from ~6 ka to present were 1.4 mm yr-1 due mainly to GIA, consistent with other east coast marsh records and geophysical models. However, a progressively slower mean rate (< 1.0 mm yr-1) characterized the last 1000 years when a multi-century-long period of tidal marsh development occurred during the Medieval Climate Anomaly (MCA) and Little Ice Age (LIA) in the Chesapeake Bay region and other East Coast marshes. This decrease was most likely due to climatic and glaciological processes and, correcting for GIA, represents a fall in global mean sea level (GMSL) at near the end of Holocene Neoglacial cooling. These pre-historical climate- and GIA-driven Chesapeake Bay sea-level changes contrast sharply with those based on Chesapeake Bay tide-gauge rates (3.1-4.5 mm yr-1) (back to 1903). After subtracting the GIA subsidence component, these rates can be attributed to long-term (millennial) global factors of accelerated ocean thermal expansion (~ 1.0 mm yr-1) and mass loss from alpine glaciers and Greenland and Antarctic Ice Sheets (1.5-2.0 mm yr-1).

Study Area

Publication type Article
Publication Subtype Journal Article
Title Holocene Sea-Level Variability from Chesapeake Bay Tidal Marshes
Series title Holocene
DOI 10.1177/0959683619862028
Volume 29
Issue 11
Year Published 2019
Language English
Publisher SAGE Publications
Contributing office(s) Florence Bascom Geoscience Center
Description 15 p.
First page 1979
Last page 1693
Country United States
State Delaware, Maryland, Virginia
Other Geospatial Chesapeake Bay
Google Analytic Metrics Metrics page
Additional publication details