Classifying crop types using two generations of hyperspectral sensors (Hyperion and DESIS) with machine learning on the cloud

Remote Sensing
By:  and 



Advances in spaceborne hyperspectral (HS) remote sensing, cloud-computing, and machine learning can help measure, model, map and monitor agricultural crops to address global food and water security issues, such as by providing accurate estimates of crop area and yield to model agricultural productivity. Leveraging these advances, we used the Earth Observing-1 (EO-1) Hyperion historical archive and the new generation DLR Earth Sensing Imaging Spectrometer (DESIS) data to evaluate the performance of hyperspectral narrowbands in classifying major agricultural crops of the U.S. with machine learning (ML) on Google Earth Engine (GEE). EO-1 Hyperion images from the 2010–2013 growing seasons and DESIS images from the 2019 growing season were used to classify three world crops (corn, soybean, and winter wheat) along with other crops and non-crops near Ponca City, Oklahoma, USA. The supervised classification algorithms: Random Forest (RF), Support Vector Machine (SVM), and Naive Bayes (NB), and the unsupervised clustering algorithm WekaXMeans (WXM) were run using selected optimal Hyperion and DESIS HS narrowbands (HNBs). RF and SVM returned the highest overall producer’s, and user’s accuracies, with the performances of NB and WXM being substantially lower. The best accuracies were achieved with two or three images throughout the growing season, especially a combination of an earlier month (June or July) and a later month (August or September). The narrow 2.55 nm bandwidth of DESIS provided numerous spectral features along the 400–1000 nm spectral range relative to smoother Hyperion spectral signatures with 10 nm bandwidth in the 400–2500 nm spectral range. Out of 235 DESIS HNBs, 29 were deemed optimal for agricultural study. Advances in ML and cloud-computing can greatly facilitate HS data analysis, especially as more HS datasets, tools, and algorithms become available on the Cloud.
Publication type Article
Publication Subtype Journal Article
Title Classifying crop types using two generations of hyperspectral sensors (Hyperion and DESIS) with machine learning on the cloud
Series title Remote Sensing
DOI 10.3390/rs13224704
Volume 13
Issue 22
Year Published 2021
Language English
Publisher MDPI
Contributing office(s) Western Geographic Science Center
Description 4704, 24 p.
Google Analytic Metrics Metrics page
Additional publication details