Nutrients, Dissolved Organic Carbon, Color, and Disinfection Byproducts in Base Flow and Stormflow in Streams of the Croton Watershed, Westchester and Putnam Counties, New York, 2000-02

Open-File Report 2009-1054
Prepared in cooperation with the State University of New York Research Foundation for the New York City Department of Environmental Protection



The Croton Watershed is unique among New York City's water-supply watersheds because it has the highest percentages of suburban development (52 percent) and wetland area (6 percent). As the City moves toward filtration of this water supply, there is a need to document water-quality contributions from both human and natural sources within the watershed that can inform watershed-management decisions. Streamwater samples from 24 small (0.1 to 1.5 mi2) subbasins and three wastewater-treatment plants (2000-02) were used to document the seasonal concentrations, values, and formation potentials of selected nutrients, dissolved organic carbon (DOC), color, and disinfection byproducts (DBPs) during stormflow and base-flow conditions. The subbasins were categorized by three types of drainage efficiency and a range of land uses and housing densities. Analyte concentrations in subbasin streams differed in response to the subbasin charateristics. Nutrient concentrations were lowest in undeveloped, forested subbasins that were well drained and increased with all types of development, which included residential, urban commercial/industrial, golf-course, and horse-farm land uses. These concentrations were further modified by subbasin drainage efficiency. DOC, in contrast, was highly dependent on drainage efficiency. Color intensity and DBP formation potentials were, in turn, associated with DOC and thus showed a similar response to drainage efficiency. Every constituent exhibited seasonal changes in concentration. Nutrients. Total (unfiltered) phosphorus (TP), soluble reactive phosphorus (SRP), and nitrate were associated primarily with residential development, urban, golf-course, and horse-farm land uses. Base-flow and stormflow concentrations of the TP, SRP, and nitrate generally increased with increasing housing density. TP and SRP concentrations were nearly an order of magnitude higher in stormflow than in base flow, whereas nitrate concentrations showed little difference between these flow conditions. Organic nitrogen concentrations (calculated as the difference between concentrations of total dissolved N and of all other N species) was the dominant form of nitrogen in undeveloped and moderately to poorly drained subbasins. High TP concentrations in stormflows (800-1,750 ug/L) were associated with well drained and moderately drained residential subbasins with high- and medium-density housing and with the moderately drained golf-course subbasin. Areas with medium to high housing densities favor TP transport because they provide extensive impervious surfaces, storm sewers, and local relief, which together can rapidly route stormwater to streams. SRP concentrations were highest in the same types of subbasins as TP, but also in sewered residential and horse-farm subbasins. The ratio of SRP to TP was typically a smaller in stormflow than in base flow. Base-flow TP and SRP concentrations were highest during the warm-weather months (May to October). The highest nitrate concentrations (3.0-4.5 mg/L) were associated with the urban subbasin and the three well drained, high-density residential subbasins. The two moderately drained lake subbasins and the two poorly drained (colored-water wetland) subbasins had consistently low nitrate concentrations despite low and medium housing densities. Nitrate concentrations were generally highest during the winter months and lowest during the autumn leaf-fall period. Organic N concentrations were highest during the leaf-fall period. Dissolved Organic Carbon. DOC concentration was consistently highest in the two poorly drained (colored-water-wetland) subbasins and lowest in the well drained subbasins. Base-flow DOC concentration increased with decreasing drainage efficiency, except in the well drained sewered subbasin with high-density housing, where slightly elevated DOC concentrations throughout the year may indicate leakage from a nearby sewer main. Seasonal changes in stormflow DOC concentrat

Study Area

Publication type Report
Publication Subtype USGS Numbered Series
Title Nutrients, Dissolved Organic Carbon, Color, and Disinfection Byproducts in Base Flow and Stormflow in Streams of the Croton Watershed, Westchester and Putnam Counties, New York, 2000-02
Series title Open-File Report
Series number 2009-1054
DOI 10.3133/ofr20091054
Edition -
Year Published 2009
Language ENGLISH
Publisher U.S. Geological Survey
Contributing office(s) New York Water Science Center
Description xx, 107 p.
Online Only (Y/N) Y
Additional Online Files (Y/N) Y
Google Analytic Metrics Metrics page
Additional publication details