Hydrometeorological model for streamflow prediction

Open-File Report 79-741



The hydrometeorological model described in this manual was developed to predict seasonal streamflow from water in storage in a basin using streamflow and precipitation data. The model, as described, applies specifically to the Skokomish, Nisqually, and Cowlitz Rivers, in Washington State, and more generally to streams in other regions that derive seasonal runoff from melting snow. Thus the techniques demonstrated for these three drainage basins can be used as a guide for applying this method to other streams. Input to the computer program consists of daily averages of gaged runoff of these streams, and daily values of precipitation collected at Longmire, Kid Valley, and Cushman Dam. Predictions are based on estimates of the absolute storage of water, predominately as snow: storage is approximately equal to basin precipitation less observed runoff. A pre-forecast test season is used to revise the storage estimate and improve the prediction accuracy. To obtain maximum prediction accuracy for operational applications with this model , a systematic evaluation of several hydrologic and meteorologic variables is first necessary. Six input options to the computer program that control prediction accuracy are developed and demonstrated. Predictions of streamflow can be made at any time and for any length of season, although accuracy is usually poor for early-season predictions (before December 1) or for short seasons (less than 15 days). The coefficient of prediction (CP), the chief measure of accuracy used in this manual, approaches zero during the late autumn and early winter seasons and reaches a maximum of about 0.85 during the spring snowmelt season. (Kosco-USGS)

Additional publication details

Publication type Report
Publication Subtype USGS Numbered Series
Title Hydrometeorological model for streamflow prediction
Series title Open-File Report
Series number 79-741
DOI 10.3133/ofr79741
Edition -
Year Published 1979
Language ENGLISH
Publisher U.S. Geological Survey,
Description vi, 88 p. :ill., map ;28 cm.
Google Analytic Metrics Metrics page