Principal faults in the Houston, Texas, metropolitan area

Scientific Investigations Map 2874




Summary -- This report, prepared by the U.S. Geological Survey in cooperation with the Harris-Galveston Coastal Subsidence District, documents and refines the locations of principal faults mapped in the Houston, Texas, metropolitan area in previous studies. Numerous subsurface faults have been documented beneath the Houston metropolitan area at depths of 3,200 to 13,000 feet. Some of these subsurface faults have affected shallower sediments, offset the present land surface (which has resulted in substantial, costly damage), and produced recognizable fault scarps. Evidence from previous studies indicates that these faults are natural geologic features with histories of movement spanning tens of thousands to millions of years. Present-day scarps reflect only the most recent displacements of faults that were active long before the present land surface of the area was formed. The precision of previously mapped fault locations was enhanced by overlaying mapped faults on a digital elevation model (DEM) of Harris County derived using light detection and ranging (Lidar). Lidar is a high-precision, laser-based system that enables collection of high-resolution topographic data. Previously mapped faults were adjusted to coincide with surface features that clearly indicate faults, which were made visible by the high-resolution topography depicted on the Lidar-derived DEM. Results of a previous study, supported by this study, indicate that faults in the southeastern part of the metropolitan area primarily occur in well-defined groups of high fault density. Faults in northern and western parts of the metropolitan area tend to occur either individually or in pairs with little tendency to cluster in high-density groups.

Study Area

Additional publication details

Publication type:
Publication Subtype:
USGS Numbered Series
Principal faults in the Houston, Texas, metropolitan area
Series title:
Scientific Investigations Map
Series number:
Year Published:
Contributing office(s):
Texas Water Science Center
1 plate