Ground Water Redox Zonation near La Pine, Oregon: Relation to River Position within the Aquifer-Riparian Zone Continuum

Scientific Investigations Report 2007-5239
Prepared in cooperation with Deschutes County
By: , and 



Increasing residential development since in the 1960s has lead to increases in nitrate concentrations in shallow ground water in parts of the 247 square mile study area near La Pine, Oregon. Denitrification is the dominant nitrate-removal process that occurs in suboxic ground water, and suboxic ground water serves as a barrier to transport of most nitrate in the aquifer. Oxic ground water, on the other hand, represents a potential pathway for nitrate transport from terrestrial recharge areas to the Deschutes and Little Deschutes Rivers. The effects of present and potential future discharge of ground-water nitrate into the nitrogen-limited Deschutes and Little Deschutes Rivers are not known. However, additions of nitrogen to nitrogen-limited rivers can lead to increases in primary productivity which, in turn, can increase the magnitudes of dissolved oxygen and pH swings in river water. An understanding of the distribution of oxic ground water in the near-river environment could facilitate understanding the vulnerability of these rivers and could be a useful tool for management of these rivers. In this study, transects of temporary wells were installed in sub-river sediments beneath the Deschutes and Little Deschutes Rivers near La Pine to characterize near-river reduction/oxidation (redox) conditions near the ends of ground-water flow paths. Samples from transects installed near the center of the riparian zone or flood plain were consistently suboxic. Where transects were near edges of riparian zones, most ground-water samples also were suboxic. Oxic ground water (other than hyporheic water) was uncommon, and was only detected near the outside edge of some meander bends. This pattern of occurrence likely reflects geochemical controls throughout the aquifer as well as geochemical processes in the microbiologically active riparian zone near the end of ground-water flow paths. Younger, typically less reduced ground water generally enters near-river environments through peripheral zones, whereas older, typically more reduced ground water tends to discharge closer to the center of the river corridor. Such distributions of redox state reflect ground-water movement and geochemical evolution at the aquifer-scale. Redox state of ground water undergoes additional modification as ground water nears discharge points in or adjacent to rivers, where riparian zone processes can be important. Lateral erosion of river systems away from the center of the flood plain can decrease or even eliminate interactions between ground water and reducing riparian zone sediments. Thus, ground water redox patterns in near-river sediments appear to reflect the position of a river within the riparian zone/aquifer continuum. Spatial heterogeneity of redox conditions near the river/aquifer boundary (that is, near the riverbed) makes it difficult to extrapolate transect-scale findings to a precise delineation of the oxic-suboxic boundary in the near-river environment of the entire study area. However, the understanding of relations between near-river redox state and proximity to riparian zone edges provides a basis for applying these results to the study-area scale, and could help guide management efforts such as nitrogen-reduction actions or establishment of Total Maximum Daily Load criteria. Coupling the ground-water redox-based understanding of river vulnerability with ground-water particle-tracking-based characterization of connections between upgradient recharge areas and receiving rivers demonstrates one means of linking effects of potential nitrate loads at the beginning of ground-water flow paths with river vulnerability.

Study Area

Publication type Report
Publication Subtype USGS Numbered Series
Title Ground Water Redox Zonation near La Pine, Oregon: Relation to River Position within the Aquifer-Riparian Zone Continuum
Series title Scientific Investigations Report
Series number 2007-5239
DOI 10.3133/sir20075239
Edition -
Year Published 2007
Language ENGLISH
Publisher Geological Survey (U.S.)
Contributing office(s) Oregon Water Science Center
Description Report: vi, 29 p.; Plate: 30 x 34 inches
Projection Lambert Conformal Conic
Additional Online Files (Y/N) Y
Google Analytic Metrics Metrics page
Additional publication details