Quantifying Ground-Water and Surface-Water Discharge from Evapotranspiration Processes in 12 Hydrographic Areas of the Colorado Regional Ground-Water Flow System, Nevada, Utah, and Arizona

Scientific Investigations Report 2008-5116
Prepared in cooperation with the National Park Service, the Bureau of Land Management, and the Fish and Wildlife Service
By: , and 



Rapid population growth in southern Nevada has increased the demand for additional water supplies from rural areas of northern Clark and southern Lincoln counties to meet projected water-supply needs. Springs and rivers in these undeveloped areas sustain fragile riparian habitat and may be susceptible to ground-water withdrawals. Most natural ground-water and surface-water discharge from these basins occurs by evapotranspiration (ET) along narrow riparian corridors that encompassed about 45,000 acres or about 1 percent of the study area. This report presents estimates of ground- and surface-water discharge from ET across 3.5 million acres in 12 hydrographic areas of the Colorado Regional Ground-Water Flow System. Ground-and surface-water discharge from ET were determined by identifying areas of ground- and surface-water ET, delineating areas of similar vegetation and soil conditions (ET units), and computing ET rates for each of these ET units. Eight ET units were identified using spectral-reflectance characteristics determined from 2003 satellite imagery, high-resolution aerial photography, and land classification cover. These ET units are dense meadowland vegetation (200 acres), dense woodland vegetation (7,200 acres), moderate woodland vegetation (6,100 acres), dense shrubland vegetation (5,800 acres), moderate shrubland vegetation (22,600 acres), agricultural fields (3,100 acres), non-phreatophytic areas (3,400,000 acres), and open water (300 acres). ET from diffuse ground-water and channelized surface-water is expressed as ETgs and is equal to the difference between total annual ET and precipitation. Total annual ET rates were calculated by the Bowen ratio and eddy covariance methods using micrometeorological data collected from four sites and estimated at 3.9 ft at a dense woodland site (February 2003 to March 2005), 3.6 ft at a moderate woodland site (July 2003 to October 2006), 2.8 ft at a dense shrubland site (June 2005 to October 2006), and 1.5 ft at a moderate shrubland site (April 2006 to October 2006). Annual ETgs rates were 3.4 ft for dense woodland vegetation, 3.2 ft for moderate woodland vegetation, 2.2 ft for dense shrubland vegetation, and 1.0 ft for moderate shrubland vegetation. Published annual rates of ETgs were used for the other ET units found in the study area. These rates were 3.4 ft for dense meadowland vegetation, 5.2 ft for agricultural fields, and 4.9 ft for open water. For the non-phreatophytic ET unit, ETgs was assumed to be zero. Estimated ground- and surface-water discharge from ET was calculated by multiplying the ETgs by the ET-unit acreage and equaled 24,480 acre-ft for dense woodland vegetation, 19,520 acre-ft for moderate woodland vegetation, 12,760 acre-ft for dense shrubland vegetation, 22,600 acre-ft for moderate shrubland vegetation, 680 acre-ft for dense meadowland vegetation, 16,120 acre-ft for agricultural fields, 1,440 acre-ft for open water, and 0 acre-ft for the non-phreatophytic ET unit. Estimated ground-water and surface-water discharge from ET from each hydrographic area was calculated by summing the total annual ETgs rate for ET units found within each hydrographic area and equaled 1,952 acre-ft for the Black Mountains Area, 6,080 acre-ft for California Wash, 4,090 acre-ft for the Muddy River Springs Area, 11,510 acre-ft for Lower Moapa Valley, 51,960 acre-ft for the Virgin River Valley, 16,168 acre-ft for Lower Meadow Valley Wash, 5,840 acre-ft for Clover Valley, and 0 acre-ft for Coyote Spring Valley, Kane Springs Valley, Tule Desert, Hidden Valley (North), and Garnet Valley. The annual discharge from ETgs for the study area totals about 98,000 acre-ft.

Study Area

Additional publication details

Publication type Report
Publication Subtype USGS Numbered Series
Title Quantifying Ground-Water and Surface-Water Discharge from Evapotranspiration Processes in 12 Hydrographic Areas of the Colorado Regional Ground-Water Flow System, Nevada, Utah, and Arizona
Series title Scientific Investigations Report
Series number 2008-5116
DOI 10.3133/sir20085116
Edition -
Year Published 2008
Language ENGLISH
Publisher Geological Survey (U.S.)
Contributing office(s) Nevada Water Science Center
Description Report: viii, 23 p.; Plate: 36 x 50 inches
Time Range Start 2003-02-01
Time Range End 2006-10-31
Additional Online Files (Y/N) Y
Google Analytic Metrics Metrics page
Additional metadata about this publication, not found in other parts of the page is in this table