Survival, Transport, and Sources of Fecal Bacteria in Streams and Survival in Land-Applied Poultry Litter in the Upper Shoal Creek Basin, Southwestern Missouri, 2001–2002

Water-Resources Investigations Report 2003-4243
Prepared in cooperation with the Missouri Department of Natural Resources, Division of Environmental Quality, Water Pollution Control program, and U.S. Environmental protection Agency, Region VII



Densities of fecal coliform bacteria along a 5.7-mi (mile) reach of Shoal Creek extending upstream from State Highway 97 (site 3) to State Highway W (site 2) and in two tributaries along this reach exceeded the Missouri Department of Natural Resources (MDNR) standard of 200 col/100 mL (colonies per 100 milliliters) for whole-body contact recreation. A combination of techniques was used in this report to provide information on the source, transport, and survival of fecal bacteria along this reach of Shoal Creek. Results of water-quality samples collected during dye-trace and seepage studies indicated that at summer low base-flow conditions, pastured cattle likely were a substantial source of fecal bacteria in Shoal Creek at the MDNR monitoring site (site 3) at State Highway 97. Using repeat element Polymerase Chain Reaction (rep-PCR), cattle were the presumptive source of about 50 percent of the Escherichia coli (E. coli) isolates in water samples from site 3. Cattle, horses, and humans were the most common presumptive source of E. coli isolates at sites further upstream. Poultry was identified by rep-PCR as a major source of E. coli in Pogue Creek, a tributary in the upper part of the study area. Results of the rep-PCR were in general agreement with the detection and distribution of trace concentrations of organic compounds commonly associated with human wastewater, such as caffeine, the antimicrobial agent triclosan, and the pharmaceutical compounds acetaminophen and thiabendazole (a common cattle anthelmintic).

Significant inputs of fecal bacteria to Shoal Creek occurred along a 1.6-mi reach of Shoal Creek immediately upstream from site 3. During a 36-hour period in July 2001, average densities of fecal coliform and E. coli bacteria increased from less than or equal to 500 col/100 mL upstream from this stream reach (sample site 2c) to 2,100 and 1,400 col/100 mL, respectively, at the MDNR sampling site. Fecal bacteria densities exhibited diurnal variability at all five sampling sites along the 5.7-mi study reach of Shoal Creek, but the trends at successive downstream sites were out of phase and could not be explained by simple advection and dispersion. At base-flow conditions, the travel time of bacteria in Shoal Creek along the 5.7-mi reach between State Highway W (site 2) and the MDNR sampling site (site 3) was about 26 hours. Substantial dispersion and dilution occurs along the upper 4.1 mi of this reach because of inflows from a number of springs and tributaries and the presence of several long pools and channel meanders. Minimal dispersion and dilution occurs along the 1.6-mi reach immediately upstream from the MDNR sampling site. Measurements of fecal bacteria decay in Shoal Creek during July 2001 indicated that about 8 percent of fecal coliform and E. coli bacteria decay each hour with an average first-order decay constant of 0.084 h-1 (per hour).

Results of field test plots indicated that substantial numbers of fecal bacteria present in poul try litter can survive in fields for as much as 8 weeks after the application of the litter to the land surface. Median densities of fecal coliform and E. coli in slurry-water samples collected from fields increased from less than 60 col/100 mL before the application of turkey and broiler litter, to as large as 420,000 and 290,000 col/100 mL after the application of litter. Bacteria densities in the test plots generally decreased in a exponential manner over time with decay rates ranging from 0.085 to 0.185 d-1 (per day) for fecal coliform to between 0.100 and 0.250 d-1 for E. coli. The apparent survival of significant numbers of fecal bacteria on fields where poultry litter has been applied indicates that runoff from these fields is a potential source of fecal bacteria to vicinity streams for many weeks following litter application.

Suggested Citation

Schumacher, J.G., Survival, transport, and sources of fecal bacteria in streams and survival in land-applied poultry litter in the upper Shoal Creek basin, southwestern Missouri, 2001–2002: U.S. Geological Survey Water-Resources Investigations Report 03–4243, 45 p.,

Table of Contents

  • Abstract
  • Introduction
  • Description of the Study Area
  • Methods of Study
  • Survival and Transport of Fecal Bacteria in Shoal Creek
  • Sources of Fecal Bacteria in Shoal Creek
  • Occurrence and Survival of Fecal Bacteria in Land-Applied Poultry Litter
  • Summary and Conclusions
  • References
Publication type Report
Publication Subtype USGS Numbered Series
Title Survival, transport, and sources of fecal bacteria in streams and survival in land-applied poultry litter in the upper Shoal Creek basin, southwestern Missouri, 2001–2002
Series title Water-Resources Investigations Report
Series number 2003-4243
DOI 10.3133/wri034243
Year Published 2003
Language English
Publisher U.S. Geological Survey
Publisher location Reston, VA
Contributing office(s) Missouri Water Science Center
Description v, 45 p.
Google Analytics Metrics Metrics page
Additional publication details