Hydrogeology and geochemistry of acid mine drainage in ground water in the vicinity of Penn Mine and Camanche Reservoir, Calaveras County, California; first-year summary

Water-Resources Investigations Report 94-4040
By:  and 



Acid drainage from the Penn Mine in Calaveras County, California, has caused contamination of ground water between Mine Run Dam and Camanche Reservoir. The Penn Mine was first developed in the 1860's primarily for copper and later produced lesser amounts of zinc, lead, silver, and gold from steeply dipping massive sulfide lenses in metamorphic rocks. Surface disposal of sulfidic waste rock and tailings from mine operations has produced acidic drainage with pH values between 2.3 and 2.7 and elevated concentrations of sulfate and metals, including copper, zinc, cadmium, iron, and aluminum. During the mine's operation and after its subsequent abandonment in the late 1950's, acid mine drainage flowed down Mine Run into the Mokelumne River. Construction of Camanche Dam in 1963 flooded part of the Mokelumne River adjacent to Penn Mine. Surface-water diversions and unlined impoundments were constructed at Penn Mine in 1979 to reduce runoff from the mine, collect contaminated surface water, and enhance evaporation. Some of the contaminated surface water infiltrates the ground water and flows toward Camanche Reservoir. Ground- water flow in the study area is controlled by the local hydraulic gradient and the hydraulic characteristics of two principal rock types, a Jurassic metavolcanic unit and the underlying Salt Spring slate. The hydraulic gradient is west from Mine Run impoundment toward Camanche Reservoir. The median hydraulic conductivity was about 10 to 50 times higher in the metavolcanic rock (0.1 foot per day) than in the slate (0.002 to 0.01 foot per day); most flow occurs in the metavolcanic rock where hydraulic conductivity is as high as 50 feet per day in two locations. The contact between the two rock units is a fault plane that strikes N20?W, dips 20?NE, and is a likely conduit for ground-water flow, based on down-hole measurements with a heatpulse flowmeter. Analyses of water samples collected during April 1992 provide a comprehensive characterization of ground water below Mine Run Dam at the Penn Mine. Specific conductance of the samples ranged from 1,810 to 18,000 microsiemens per centimeter. pH values of sampled ground water ranged from 3.7 to 7.8. Dissolved constituents in ground water ranged from less than 0.010 to 86 milligrams per liter for copper, from less than 0.010 to 240 milligrams per liter for iron, from less than 0.01 to 250 milligrams per liter for aluminum, and from 0.020 to 600 milligrams per liter for zinc. A contaminated ground-water plume appears to originate in the metavolcanic unit along the north abutment of Mine Run Dam. The plume is characterized by low pH, high concentrations of sulfate and dissolved metals, and enrichment of the heavy stable isotopes of hydrogen and oxygen. Dissolved iron and sulfate correlate positively, suggesting pyrite as the probable source of these elements. The concentrations of some dissolved constituents apparently are controlled by equilibrium with solid mineral phases. Poorly crystalline hydrous ferric oxide and microcrystalline gibbsite are close to saturation in ground water with pH values between 4 and 7.8 and probably control the solubility of Fe3+ and Al3+, respectively. Using a range of bulk hydraulic conductivity values for the metavolcanic unit from the median value (0.1 foot per day) to the highest values (50 feet per day), together with a representative cross-sectional area (3,000 square feet) for the contaminated ground-water plume and a hydraulic gradient of 0.14 from August 1992, the following range in ground-water flow rates is estimated by Darcy's law: 42 to 21,000 cubic feet per day, or 105 to 5x107 gallons per year. Multiplying this estimated range in ground-water flow by representative metal concentrations from the contaminated plume gives the following estimates for annual metal transport to Camanche Reservoir by ground water: 86 to 42,000 pounds of copper; 310 to 150,000 pounds of zinc; and 1.5 to 750 pounds of cadmium. These crude preliminary es

Additional publication details

Publication type Report
Publication Subtype USGS Numbered Series
Title Hydrogeology and geochemistry of acid mine drainage in ground water in the vicinity of Penn Mine and Camanche Reservoir, Calaveras County, California; first-year summary
Series title Water-Resources Investigations Report
Series number 94-4040
DOI 10.3133/wri944040
Edition -
Year Published 1995
Language ENGLISH
Publisher U.S. Geological Survey ; U.S.G.S. Earth Science Information Center, Open-File Reports Section [distributor],
Description v, 45 p. :ill., maps ;28 cm.