Hydrogeology and water quality of the West Valley Creek Basin, Chester County, Pennsylvania

Water-Resources Investigations Report 94-4137
Prepared in cooperation with the Chester County Water Resources Authority
By: , and 



The West Valley Creek Basin drains 20.9 square miles in the Piedmont Physiographic Province of southeastern Pennsylvania and is partly underlain by carbonate rocks that are highly productive aquifers. The basin is undergoing rapid urbanization that includes changes in land use and increases in demand for public water supply and wastewater disposal. Ground water is the sole source of supply in the basin.

West Valley Creek flows southwest in a 1.5-mile-wide valley that is underlain by folded and faulted carbonate rocks and trends east-northeast, parallel to regional geologic structures. The valley is flanked by hills underlain by quartzite and gneiss to the north and by phyllite and schist to the south. Surface water and ground water flow from the hills toward the center of the valley. Ground water in the valley flows west-southwest parallel to the course of the stream. Seepage investigations identified losing reaches in the headwaters area where streams are underlain by carbonate rocks and gaining reaches downstream. Tributaries contribute about 75 percent of streamflow. The ground-water and surface-water divides do not coincide in the carbonate valley. The ground-water divide is about 0.5 miles west of the surface-water divide at the eastern edge of the carbonate valley. Underflow to the east is about 1.1 inches per year. Quarry dewatering operations at the western edge of the valley may act partly as an artificial basin boundary, preventing underflow to the west.

Water budgets for 1990, a year of normal precipitation (45.8 inches), and 1991, a year of sub-normal precipitation (41.5 inches), were calculated. Streamflow was 14.61 inches in 1990 and 12.08 inches in 1991. Evapotranspiration was estimated to range from 50 to 60 percent of precipitation. Base flow was about 62 percent of streamflow in both years. Exportation by sewer systems was about 3 inches from the basin and, at times, equaled base flow during the dry autumn of 1991. Recharge was estimated to be 18.5 inches in 1990 and 13.7 inches in 1991.

Ground-water quality in the basin reflects differences in lithology and has been affected by human activities. Ground water in the carbonate rocks is naturally hard, has a near neutral pH, and contains more dissolved solids and less dissolved iron, manganese, and radon-222 than ground water in the noncarbonate rocks, which is soft, with moderately acidic to acidic pH. Regional contamination by chloride and nitrate and local contamination by organic compounds and metals was detected. Natural background concentrations are estimated to be about 1 milligram per liter for nitrate as nitrogen and less than 3 milligrams per liter for chloride. Ground water in unsewered areas and agricultural areas of the basin has median concentrations of nitrate that are greater than those in ground water from other areas; septic system effluent and fertilizer are probable sources of elevated nitrate. Water samples from wells in urbanized areas contain greater concentrations of chloride than samples from wells in residential areas; road salt is the probable source of elevated chloride. Organic solvents, especially trichloroethylene, were detected in 30 percent of the wells sampled in the urbanized carbonate valley. Most of the organic solvents and some of the metals in ground water were detected near old industrial sites.

Base-flow stream quality of West Valley Creek was determined at 15 sites from monthly sampling for 1 year. Differences in stream quality reflect differences in lithology, land use, and point sources in tributary subbasins and mainstem reaches. The chemical composition of base flow in the mainstem is dominated by ground-water discharge from carbonate rocks. Elevated concentrations of nitrate (greater than 3 milligrams per liter as nitrogen) in base flow were measured in a tributary draining agricultural land and in a tributary draining an unsewered residential area. Elevated concentrations of phosphate (greater than 0.5 milligrams per liter as phosphorus) were measured in a stream that receives treated sewage effluent. Discharge of water containing elevated sulfate (about 250 milligrams per liter) from quarry dewatering operations contributes to die increase in sulfate concentration (of 10 to 40 milligrams per liter) in base flow downstream from the quarry. The chloride load at all stream sites is greater than the load contributed by precipitation and mineral weathering to the basin, indicating anthropogenic sources of chloride throughout the basin.

The diversity index of the benthic invertebrate community has increased since 1973 at the longterm biological monitoring site on West Valley Creek, indicating an improvement in stream quality. The improvement probably is related to controls on discharges and banning of pesticides, such as DOT, in the 1970's. Concentrations of dissolved constituents, except for chloride, determined for base flow in the autumn do not appear to have changed since 1971. Application of the seasonal Kendall test for trend indicates that concentrations of chloride in base flow have increased since 1971; this increase may be related to the increase in urbanization in the basin. The benthic community structure at the West Valley Creek site in 1991 indicates slight nutrient enrichment.

Lithium was detected in ground water and surface water downgradient from two lithiumprocessing facilities. Until 1991, lithium was discharged into a losing reach of West Valley Creek, thus introducing lithium into the ground-water system. The potential for cross-contamination between the ground-water and surface-water systems is great, as demonstrated by the detection of lithium in ground water and surface water downstream and downgradient from the two lithium-processing facilities. The lithium that was discharged into the creek acts as a conservative tracer in gaining reaches of West Valley Creek, maintaining a mass balance and characteristic isotopic signature. Lithium-7/lithium-6 ratios were greater in streams that are affected by sewage and by lithium-processing discharges and in ground water downgradient from the lithium-processing facilities than natural background lithium isotopic ratios.

Study Area

Publication type Report
Publication Subtype USGS Numbered Series
Title Hydrogeology and water quality of the West Valley Creek Basin, Chester County, Pennsylvania
Series title Water-Resources Investigations Report
Series number 94-4137
DOI 10.3133/wri944137
Year Published 1997
Language English
Publisher U.S. Geological Survey
Contributing office(s) Pennsylvania Water Science Center
Description Report: ix, 160 p.; 1 Plate: 32.59 x 26.79 inches
Country United States
State Pennsylvania
County Chester County
Other Geospatial West Valley Creek Basin
Datum National Geodetic Datum of 1929
Scale 24000
Google Analytic Metrics Metrics page
Additional publication details