Water-quality assessment of the Rio Grande Valley, Colorado, New Mexico and Texas; ground-water quality in the Rio Grande flood plain, Cochiti Lake, New Mexico, to El Paso, Texas, 1995

Water-Resources Investigations Report 96-4249
By:  and 



From March to May of 1995, water samples were collected from 30 wells located in the flood plain of the Rio Grande between Cochiti Lake, New Mexico, and El Paso, Texas. These samples were analyzed for a broad host of constituents, including field parameters, major constituents, nutrients, dissolved organic carbon, trace elements, radiochemicals, pesticides, and volatile organic compounds. The main purpose of this study was to observe the quality of ground water in this part of the Rio Grande Valley study unit of the U.S. Geological Survey National Water-Quality Assessment program. The sampling effort was limited to the basin- fill aquifer beneath the above-defined reach of the Rio Grande flood plain because of the relative homogeneity of the hydrogeology, the large amount of ground-water use for public supply, and the potential for land-use activities to affect the quality of ground water. Most of the wells sampled for the study are used for domestic purposes, including drinking water. Depths to the tops of the sampling intervals in the 30 wells ranged from 10 to 345 feet below land surface, and the median was 161.5 feet; the sampling intervals in most of the wells spanned about 10 feet or less. Quality-control data were collected at three of the wells. A significant amount of variation was found in the chemical composition of ground water sampled throughout the study area, but the water generally was found to be of suitable chemical quality for use as drinking water, according to current enforceable standards established by the U.S. Environmental Protection Agency (EPA). Nutrients generally were measured at concentrations near or below their method reporting limits. The most dominant nutrient species was nitrite plus nitrate, at a maximum concentration of 1.9 milligrams per liter (as N). Only eight of the trace elements analyzed for had median concentrations greater than their respective minimum reporting levels. Water from one well exceeded the lifetime health advisory established by the EPA for molybdenum; water from a different well exceeded the proposed EPA maximum contaminant level for uranium. Gross alpha and gross beta particle activities generally appeared to strongly correlate with quantities of uranium and potassium, respectively, detected in ground water. However, water from one well exceeded the EPA maximum contaminant level for gross alpha particle activity and may exceed the EPA maximum contaminant level for beta particle and photon activity, although current data on gross beta particle activities are not conclusive on this point. Radon concentrations did not appear to directly correlate with uranium concentrations. The herbicide prometon was the only synthetic organic compound detected in ground water in the study area, and was detected in only one well, at a concentration of 0.038 microgram per liter. This well is shallow and is not used for drinking water. With the exception of the one detection of prometon, no strong evidence was found of effects on ground-water quality from human activities. Therefore, most of the water sampled probably recharged at the margins of the alluvial basins or recharged through the flood plain before human development began. With respect to major constituents, the concentrations of dissolved solids ranged from 209 to 3,380 milligrams per liter, and the median concentration was 409.5 milligrams per liter. There is evidence that the overall chemical composition of ground water in the study area may be affected by several processes, including cation exchange, feldspar weathering, calcite dissolution and precipitation, dissolution of volcanic glass, and microbial activity. Several chemical constituents in ground water showed relatively distinct spatial patterns that appear to be related to one or more of these processes.
Publication type Report
Publication Subtype USGS Numbered Series
Title Water-quality assessment of the Rio Grande Valley, Colorado, New Mexico and Texas; ground-water quality in the Rio Grande flood plain, Cochiti Lake, New Mexico, to El Paso, Texas, 1995
Series title Water-Resources Investigations Report
Series number 96-4249
DOI 10.3133/wri964249
Edition -
Year Published 1997
Language ENGLISH
Publisher U.S. Geological Survey ; Branch of Information Services [distributor],
Description viii, 93 p. :ill., maps ;28 cm.
Google Analytic Metrics Metrics page
Additional publication details