Distribution of major herbicides in ground water of the United States

Water-Resources Investigations Report 98-4245

Prepared in cooperation with U.S. Environmental Protection Agency, Office of Pesticide Programs
, , , and



Information on the concentrations and spatial distributions of pesticides and their transformation products, or degradates, in the hydrologic system is essential for managing pesticide use in both agricultural and nonagricultural settings to protect water resources. This report examines the occurrence of selected herbicides and their degradates in ground water, primarily on the basis of results from two large-scale, multistate investigations by the U.S. Geological Survey—the National Water-Quality Assessment (NAWQA) Program and the Midwest Pesticide Study (MWPS). The NAWQA pesticide data were derived from 2,227 sites (wells and springs) sampled in 20 major hydrologic basins across the United States from 1993 to 1995; the MWPS data were obtained from the sampling of 303 wells in a 12-state area of the northern midcontinent from 1991 to 1994. Data are presented for seven high-use herbicides: five of current interest to the U.S. Environmental Protection Agency for designing Pesticide Management Plans (atrazine, cyanazine, simazine, alachlor and metolachlor), a largely nonagricultural herbicide (prometon), and an agricultural herbicide first registered in 1994 for use in the United States (acetochlor).

Six of the herbicides (all except acetochlor) were detected by the U.S. Geological Survey studies in shallow ground water—that is, ground water recharged within the past 10 years—in a variety of agricultural and nonagricultural settings, as well as in several aquifers that are sources of drinking-water supply. Acetochlor was not detected by the MWPS in the summer of 1994, but was detected in shallow ground water during the NAWQA Program by early 1995, and during another U.S. Geological Survey study in Iowa during the summers of 1995 and 1996. The acetochlor observations suggest that, in agreement with results from previous field studies, some pesticides may be detected in shallow ground water within 1 year following their application.

In accord with the results from other largescale multistate studies of pesticides in ground water, more than 98 percent of the detections during the NAWQA and MWPS investigations were at concentrations of less than 1 microgram per liter. Consequently, water quality criteria for drinking water—that is, standards established to protect human health—were exceeded at fewer than 0.1 percent of the sites sampled by NAWQA (all of these exceedances involving atrazine alone) and at none of those sampled in 1992 by the MWPS. These criteria, however, may not accurately reflect the overall health risks associated with pesticide detections in water resources because they have been established only for a relatively small number of pesticides and they do not account for the additive or synergistic effects of mixtures, impacts on the health of aquatic ecosystems, or the effects of pesticide degradates. Among the sites sampled during the NAWQA and MWPS investigations, 19.7 and 13.8 percent, respectively, had detections of two or more of the herbicides of interest. Furthermore, for most of the herbicides for which degradates were examined, detection frequencies for major degradates were typically higher than for their respective parent compounds, particularly for the herbicides that are less persistent in aerobic soil.

Frequencies of detection at or above 0.01 microgram per liter in shallow ground water beneath agricultural areas during the NAWQA study were significantly correlated with agricultural use in those areas for atrazine, cyanazine, alachlor, and metolachlor (P<0.05; Spearman rank correlations), but not for simazine (P>0.05). In urban areas, overall frequencies of detection of these five herbicides in shallow ground water were positively correlated with their total nonagricultural use nationwide (P=0.026; simple linear correlation). Multivariate statistical analysis indicated that frequencies of detection in shallow ground water beneath agricultural areas were positively correlated with half-lives for transformation in aerobic soil and agricultural use of the compounds (P≤0.0001 for both parameters). Although frequencies of detection were not significantly correlated with their subsurface mobility (Koc; P=0.19) or the median well depths of the sampled networks (P=0.72), the range of Koc values among the five herbicides and the range of well depths were limited.

Study Area

Additional publication details

Publication type:
Publication Subtype:
USGS Numbered Series
Distribution of major herbicides in ground water of the United States
Series title:
Water-Resources Investigations Report
Series number:
Year Published:
U.S. Geological Survey
Publisher location:
Reston, VA
Contributing office(s):
Iowa Water Science Center
ix, 57 p. : ill. (some col.), col. maps ; 28 cm.
United States
Online Only (Y/N):
Additional Online Files (Y/N):