Hydrology of aquifer systems in the Memphis area, Tennessee

Water Supply Paper 1779- O
By: , and 



The Memphis area as described in .this report comprises about 1,300 square miles of the Mississippi embayment part of the Gulf Coastal Plain. The area is underlain by as much as 3,000 feet of sediments ranging in age from Cretaceous through Quaternary. In 1960, 150 mgd (million gallons per day) of water was pumped from the principal aquifers. Municipal pumpage accounted for almost half of this amount, and industrial pumpage a little more than half. About 90 percent of the water used in the area is derived from the '500-foot' sand, and most of the remainder is from the ?400-foot' sand; both sands are of Eocene age. A small amount of water for domestic use is pumped from the terrace deposits of Pliocene and Pleistocene age. Both the '500-foot' and the '1,400-foot' sands are artesian aquifers except in the southeastern part of the area; there the water level in wells in the '500-foot' sand is now below the overlying confining clay. Water levels in both aquifers have declined almost continuously since pumping began, but the rate of decline has increased rapidly since 1940. Water-level decline in the '1,400-foot' sand has been less pronounced since 1956. The cones of depression in both aquifers have expanded and deepened as a result of the annual increases in pumping, and an increase in hydraulic gradients has induced a greater flow of water into the area. Approximately 135 mgd entered the Memphis area through the '500-foot' sand aquifer in 1960, and, of this amount, 60 mgd originated as inflow from the east and about 75 mgd was derived from leakage from the terrace deposits, from the north, south, and west and from other sources. Of the water entering the '1,400-foot' sand, about 5 mgd was inflow from the east, and about half that amount was from each of the north, south, and west directions. The average rate of movement of water outside the area of heavy withdrawals is about 70 feet per year in the '500-foot' sand and about 40 feet per year in the '1,400-foot' sand. The average rate of depletion of storage in each aquifer since pumping began is about 1 mgd. Most of the recharge to the '500-foot' and '1,400-foot' sands occurs in outcrop areas about 30-80 miles east of Memphis. Also, water leaks from the terrace deposits to the '500-foot' sand in some places, and there may be some leakage from streams where the confining clay is thin or is breached by faults or streams. The quality of water from both the principal aquifers is very good. Iron, carbon dioxide, and hydrogen sulfide are the only constituents found in undesirable quantities. Water from the terrace deposits is hard but generally contains less iron and carbon dioxide than water from either of the principal aquifers. The hydraulic characteristics of both aquifers were determined by pumping tests and by applying the knowledge of the geology o# the area; these characteristics indicate that the aquifers are capable of producing more water than is currently being pumped from them. The '500-foot' sand will produce more water per unit decline of water level than will the '1,400-foot' sand. There appears to be no reason why the development of water supplies from both aquifers should not continue, but well spacing will remain a factor which could affect future development. Greater well spacing will tend to prolong the useful life of a well and the aquifers.

Additional publication details

Publication type Report
Publication Subtype USGS Numbered Series
Title Hydrology of aquifer systems in the Memphis area, Tennessee
Series title Water Supply Paper
Series number 1779
Chapter O
DOI 10.3133/wsp1779O
Edition -
Year Published 1964
Language ENGLISH
Publisher U.S. Gov't. Print. Off.,
Description [31] leaves :ill. ;28 cm.