Gravity and magnetic expression of the San Leandro gabbro with implications for the geometry and evolution of the Hayward Fault zone, northern California

Bulletin of the Seismological Society of America
By: , and 

Links

Abstract

The Hayward Fault, one of the most hazardous faults in northern California, trends north-northwest and extends for about 90 km along the eastern San Francisco Bay region. At numerous locations along its length, distinct and elongate gravity and magnetic anomalies correlate with mapped mafic and ultramafic rocks. The most prominent of these anomalies reflects the 16-km-long San Leandro gabbroic block. Inversion of magnetic and gravity data constrained with physical property measurements is used to define the subsurface extent of the San Leandro gabbro body and to speculate on its origin and relationship to the Hayward Fault Zone. Modeling indicates that the San Leandro gabbro body is about 3 km wide, dips about 75??-80?? northeast, and extends to a depth of at least 6 km. One of the most striking results of the modeling, which was performed independently of seismicity data, is that accurately relocated seismicity is concentrated along the western edge or stratigraphically lower bounding surface of the San Leandro gabbro. The western boundary of the San Leandro gabbro block is the base of an incomplete ophiolite sequence and represented at one time, a low-angle roof thrust related to the tectonic wedging of the Franciscan Complex. After repeated episodes of extension and attenuation, the roof thrust of this tectonic wedge was rotated to near vertical, and in places, the strike-slip Hayward Fault probably reactivated or preferentially followed this pre-existing feature. Because earthquakes concentrate near the edge of the San Leandro gabbro but tend to avoid its interior, we qualitatively explore mechanical models to explain how this massive igneous block may influence the distribution of stress. The microseismicity cluster along the western flank of the San Leandro gabbro leads us to suggest that this stressed volume may be the site of future moderate to large earthquakes. Improved understanding of the three-dimensional geometry and physical properties along the Hayward Fault will provide additional constraints on seismic hazard probability, earthquake modeling, and fault interactions that are applicable to other major strike-slip faults around the world.

Study Area

Publication type Article
Publication Subtype Journal Article
Title Gravity and magnetic expression of the San Leandro gabbro with implications for the geometry and evolution of the Hayward Fault zone, northern California
Series title Bulletin of the Seismological Society of America
DOI 10.1785/0120020013
Volume 93
Issue 1
Year Published 2003
Language English
Publisher Seismological Society of America
Description 13 p.
First page 14
Last page 26
Country United States
State California
Other Geospatial Hayward Fault zone, northern California
Google Analytic Metrics Metrics page
Additional publication details