On the interpretation of energy and energy fluxes of nonlinear internal waves: An example from Massachusetts Bay

Journal of Fluid Mechanics
By: , and 

Links

Abstract

A self-consistent formalism to estimate baroclinic energy densities and fluxes resulting from the propagation of internal waves of arbitrary amplitude is derived using the concept of available potential energy. The method can be applied to numerical, laboratory or field data. The total energy flux is shown to be the sum of the linear energy flux ??? u??? p??? dz (primes denote baroclinic quantities), plus contributions from the non-hydrostatic pressure anomaly and the self-advection of kinetic and available potential energy. Using highly resolved observations in Massachusetts Bay, it is shown that due to the presence of nonlinear internal waves periodically propagating in the area, ??? u??? p??? dz accounts for only half of the total flux. The same data show that equipartition of available potential and kinetic energy can be violated, especially when the nonlinear waves begin to interact with the bottom. ?? 2006 Cambridge University Press.

Study Area

Publication type Article
Publication Subtype Journal Article
Title On the interpretation of energy and energy fluxes of nonlinear internal waves: An example from Massachusetts Bay
Series title Journal of Fluid Mechanics
DOI 10.1017/S0022112006000991
Volume 561
Year Published 2006
Language English
Publisher Cambridge University Press
Contributing office(s) Woods Hole Coastal and Marine Science Center
Description 10 p.
First page 103
Last page 112
Country United States
Other Geospatial Massachusetts Bay
Google Analytic Metrics Metrics page
Additional publication details