Chronology and tectonic controls of late tertiary deposition in the southwestern Tian Shan foreland, NW China

Basin Research
By: , and 

Links

Abstract

Magnetostratigraphy from the Kashi foreland basin along the southern margin of the Tian Shan in Western China defines the chronology of both sedimentation and the structural evolution of this collisional mountain belt. Eleven magnetostratigraphic sections representing ???13 km of basin strata provide a two- and three-dimensional record of continuous deposition since ???18 Ma. The distinctive Xiyu conglomerate makes up the uppermost strata in eight of 11 magnetostratigraphic sections within the foreland and forms a wedge that thins southward. The basal age of the conglomerate varies from 15.5??0.5 Ma at the northernmost part of the foreland, to 8.6??0.1 Ma in the central (medial) part of the foreland and to 1.9??0.2, ???1.04 and 0.7??0.1 Ma along the southern deformation front of the foreland basin. These data indicate the Xiyu conglomerate is highly time-transgressive and has prograded south since just after the initial uplift of the Kashi Basin Thrust (KBT) at 18.9??3.3 Ma. Southward progradation occurred at an average rate of ???3 mm year -1 between 15.5 and 2 Ma, before accelerating to ???10 mm year-1. Abrupt changes in sediment-accumulation rates are observed at 16.3 and 13.5 Ma in the northern part of the foreland and are interpreted to correspond to southward stepping deformation. A subtle decrease in the sedimentation rate above the Keketamu anticline is determined at ???4.0 Ma and was synchronous with an increase in sedimentation rate further south above the Atushi Anticline. Magnetostratigraphy also dates growth strata at <4.0, 1.4??0.1 and 1.4??0.2 Ma on the southern flanks the Keketamu, Atushi and Kashi anticlines, respectively. Together, sedimentation rate changes and growth strata indicate stepped migration of deformation into the Kashi foreland at least at 16.3, 13.5, 4.0 and 1.4 Ma. Progressive reconstruction of a seismically controlled cross-section through the foreland produces total shortening of 13-21 km and migration of the deformation front at 2.1-3.4 mm year-1 between 19 and 13.5 Ma, 1.4-1.6mm year-1 between 13.5 and 4.0 Ma and 10 mm year-1 since 4.0 Ma. Migration of deformation into the foreland generally causes (1) uplift and reworking of basin-capping conglomerate, (2) a local decrease of accommodation space above any active structure where uplift occurs, and hence a decrease in sedimentation rate and (3) an increase in accumulation on the margins of the structure due to increased subsidence and/or ponding of sediment behind the growing folds. Since 5-6 Ma, increased sediment-accumulation (???0.8 mm year-1) and gravel progradation (???10 mm year-1) rates appear linked to higher deformation rates on the Keketamu, Atushi and Kashi anticlines and increased subsidence due to loading from both the Tian Shan and Pamir ranges, and possibly a change in climate causing accelerated erosion. Whereas the rapid (???10 mm year-1) progradation of the Xiyu conglomerate after 4.0 Ma may be promoted by global climate change, its overall progradation since 15.5 Ma is due to the progressive encroachment of deformation into the foreland. ?? 2007 Blackwell Publishing Ltd.
Publication type Article
Publication Subtype Journal Article
Title Chronology and tectonic controls of late tertiary deposition in the southwestern Tian Shan foreland, NW China
Series title Basin Research
DOI 10.1111/j.1365-2117.2007.00339.x
Volume 19
Issue 4
Year Published 2007
Language English
Larger Work Type Article
Larger Work Subtype Journal Article
Larger Work Title Basin Research
First page 599
Last page 632
Google Analytic Metrics Metrics page
Additional publication details