R. L. Moffatt
L. C. Kjelstrom
1981
Skew coefficients for the log-Pearson type III distribution are generalized on the basis of some similarity of floods in the Snake River basin and other parts of Idaho. Generalized skew coefficients aid in shaping flood-frequency curves because skew coefficients computed from gaging stations having relatively short periods of peak flow records can be unreliable. Generalized skew coefficients can be obtained for a gaging station from one of three maps in this report. The map to be used depends on whether (1) snowmelt floods are domiant (generally when more than 20 percent of the drainage area is above 6,000 feet altitude), (2) rainstorm floods are dominant (generally when the mean altitude is less than 3,000 feet), or (3) either snowmelt or rainstorm floods can be the annual miximum discharge. For the latter case, frequency curves constructed using separate arrays of each type of runoff can be combined into one curve, which, for some stations, is significantly different than the frequency curve constructed using only annual maximum discharges. For 269 gaging stations, flood-frequency curves that include the generalized skew coefficients in the computation of the log-Pearson type III equation tend to fit the data better than previous analyses. Frequency curves for ungaged sites can be derived by estimating three statistics of the log-Pearson type III distribution. The mean and standard deviation of logarithms of annual maximum discharges are estimated by regression equations that use basin characteristics as independent variables. Skew coefficient estimates are the generalized skews. The log-Pearson type III equation is then applied with the three estimated statistics to compute the discharge at selected exceedance probabilities. Standard errors at the 2-percent exceedance probability range from 41 to 90 percent. (USGS)
application/pdf
10.3133/ofr81909
en
U.S. Geological Survey
A method of estimating flood-frequency parameters for streams in Idaho
reports